share_log

New Lunit Study Demonstrates Universal AI Model for Analysis of Immunohistochemistry Images

New Lunit Study Demonstrates Universal AI Model for Analysis of Immunohistochemistry Images

新的Lunit研究展示了用于分析免疫组织化学图像的通用人工智能模型
PR Newswire ·  12/12 22:08

Research in npj Precision Oncology highlights multi-cohort training approach and accurate analysis of unseen immunohistochemistry data

npj Precision Oncology 的研究强调了多队列训练方法和对看不见的免疫组织化学数据的准确分析

SEOUL, South Korea, Dec. 12, 2024 /PRNewswire/ -- Lunit (KRX:328130.KQ), a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, today announced the publication of a new study in npj Precision Oncology detailing the development of its Universal Immunohistochemistry (uIHC) AI model. The study demonstrates how the model excels at analyzing diverse cancer types and IHC stains, including datasets it had never encountered before, due to a novel training approach. Now commercialized as Lunit SCOPE uIHC, the model enables advanced biomarker formation from even singleplex IHC, with subcellular stain localization, continuous intensity scoring, and cell type identification..

韩国首尔,2024年12月12日 /PRNewswire/--由人工智能驱动的癌症诊断和治疗解决方案的领先提供商卢尼特(KRX: 328130.KQ)今天宣布 在 npj Precision Oncology 上发表一项新研究 详细介绍了其通用免疫组织化学(uiHC)人工智能模型的开发。该研究表明,由于采用了新的训练方法,该模型在分析不同的癌症类型和IHC染色方面表现出色,包括以前从未遇到过的数据集。该模型现已商业化为Lunit SCOPE uiHC,即使是单重免疫也能形成先进的生物标志物,具有亚细胞染色定位、持续强度评分和细胞类型识别功能。

Lunit's Universal Immunohistochemistry (uIHC) AI model, "Lunit SCOPE uIHC"
Lunit 的通用免疫组织化学 (uiHC) AI 模型 “Lunit SCOPE uiHC”

Addressing Challenges in IHC Analysis

解决 IHC 分析中的挑战

Immunohistochemistry (IHC) is an essential tool in oncology, enabling pathologists to detect and quantify protein expression which in turn guides decisions for systemic therapy. However, while several AI algorithms exist to assist in scoring IHC images and improving accuracy, current AI models face two major limitations:

免疫组织化学(IHC)是肿瘤学的重要工具,它使病理学家能够检测和量化蛋白质表达,进而指导全身治疗的决策。但是,尽管有几种人工智能算法可以帮助对IHC图像进行评分和提高准确性,但当前的人工智能模型面临两个主要局限性:

  1. Data Dependency: Current AI-IHC models require large numbers of immunostain-specific images for training, which are difficult to obtain, particularly for novel immunostain-target pairs.
  2. Lack of Generalization: Current AI-IHC models struggle to analyze datasets that differ from their training set either in immunostain or cancer types, limiting their ability to be effective in diverse indications.
  1. 数据依赖性:当前的AI-IHC模型需要大量的免疫染色特异性图像进行训练,而这些图像很难获得,尤其是对于新的免疫染色-靶标对而言。
  2. 缺乏概括性:当前的AI-IHC模型难以分析在免疫染色或癌症类型方面与训练集不同的数据集,这限制了它们在不同适应症中的有效能力。

These challenges underscore the need for scalable solutions capable of accurate analysis across a wide range of cancer types and immunostains.

这些挑战突显了对能够对各种癌症类型和免疫染色素进行准确分析的可扩展解决方案的需求。

uIHC Model Outperforms in Generalization

uiHC 模型在泛化方面表现优于其他模型

Lunit's study compared eight deep learning models, including four single-cohort (trained using data from a single stain or cancer type) and four multi-cohort (trained on combined datasets spanning multiple stains and cancer types) approaches, to evaluate their performance on both familiar and unseen datasets. The results validated the uIHC model's ability to generalize across diverse datasets with high accuracy.

Lunit 的研究比较了八种深度学习模型,包括四种单队列(使用来自单一染色或癌症类型的数据进行训练)和四种多队列(在涵盖多种染色和癌症类型的组合数据集上训练)方法,以评估它们在熟悉和看不见的数据集上的表现。结果验证了uiHC模型能够高精度地对不同的数据集进行概括。

Key results include:

主要结果包括:

  • High Concordance on Known Datasets: The uIHC model achieved a Cohen's kappa score of 0.792, surpassing the best single-cohort model, which scored 0.744 when analyzing known cancer types and immunostains.
  • Superior Generalization to Unseen Data: On novel datasets involving previously unseen cancer types and immunostains, the uIHC model achieved a Cohen's kappa score of 0.610, representing a relative improvement of 10.2% over the single-cohort model average of 0.508.
  • Enhanced Tumor Proportion Score (TPS) Accuracy: Across multi-stain test sets, the uIHC model achieved an AUC of 0.921 for TPS evaluations and a TPS accuracy of 75.7%, demonstrating its reliability in quantifying IHC images.
  • 已知数据集的高一致性:uiHC模型的Kappa分数为0.792,超过了最佳单队列模型,后者在分析已知癌症类型和免疫染色剂时得分为0.744。
  • 对看不见的数据具有卓越的概括性:在涉及以前未见过的癌症类型和免疫染色剂的新数据集上,UiHC模型的科恩kappa分数为0.610,与单队列模型平均值0.508相比,相对提高了10.2%。
  • 增强的肿瘤比例评分(TPS)准确性:在多染色测试集中,uIHC模型的TPS评估AUC为0.921,TPS准确率为75.7%,这表明了其在量化IHC图像方面的可靠性。

These findings highlight the model's robust performance across a wide variety of cancer types and immunostains, including those it had not been trained on.

这些发现突显了该模型在各种癌症类型和免疫染色素上的强劲表现,包括那些未经训练的癌症类型和免疫染色。

The uIHC model's ability to generalize across diverse IHC images marks a transformative step in digital pathology. By reducing the dependency on large stain-specific datasets, it enables scalable and efficient biomarker analysis for clinical diagnostics and drug development. This capability is particularly valuable for evaluating new biomarkers associated with novel therapies, addressing a critical bottleneck in precision oncology.

uiHC模型能够对不同的IHC图像进行概括,这标志着数字病理学迈出了变革性的一步。通过减少对大型染色特异性数据集的依赖,它可以为临床诊断和药物开发提供可扩展和高效的生物标志物分析。这种能力对于评估与新疗法相关的新生物标志物特别有价值,可以解决精准肿瘤学的关键瓶颈。

"Our Universal Immunohistochemistry AI model solves a practical bottleneck in development settings—handling unseen cancer types and stains without requiring additional data annotation," said Brandon Suh, CEO of Lunit. "By proving the effectiveness of a multi-cohort training approach, this study shows how AI can be adapted to real-world complexities, delivering both precision and scalability. With the launch of Lunit SCOPE uIHC, we're enabling researchers and clinicians to focus on what truly matters: advancing patient care and accelerating therapeutic innovation."

Lunit首席执行官Brandon Suh表示:“我们的通用免疫组织化学AI模型解决了开发环境中的一个实际瓶颈——无需额外数据注释即可处理看不见的癌症类型和染色。”“通过证明多队列训练方法的有效性,这项研究表明了人工智能如何适应现实世界的复杂性,同时提供精度和可扩展性。随着Lunit SCOPE uiHC的推出,我们使研究人员和临床医生能够专注于真正重要的事情:推进患者护理和加速治疗创新。”

About Lunit

关于 Lunit

Founded in 2013, Lunit (KRX:328130.KQ) is a medical AI company on a mission to conquer cancer. We harness AI-powered medical image analytics and AI biomarkers to ensure accurate diagnosis and optimal treatment for each cancer patient. The FDA-cleared Lunit INSIGHT suite for cancer screening serves over 4,500 hospitals and medical institutions across 55+ countries.

Lunit(KRX: 328130.KQ)成立于2013年,是一家医疗人工智能公司,其使命是战胜癌症。我们利用人工智能驱动的医学图像分析和人工智能生物标志物,确保为每位癌症患者提供准确的诊断和最佳治疗。经美国食品药品管理局批准的Lunit Insight癌症筛查套件为55多个国家的4500多家医院和医疗机构提供服务。

Lunit clinical studies have been published in top journals, including the Journal of Clinical Oncology and the Lancet Digital Health, and presented at global conferences such as ASCO and RSNA. In 2024, Lunit acquired Volpara Health Technologies, setting the stage for unparalleled synergy and accuracy, particularly in breast health and screening technologies. Headquartered in Seoul, South Korea, with a network of offices worldwide, Lunit leads the global fight against cancer. Discover more at lunit.io.

Lunit的临床研究已发表在顶级期刊上,包括《临床肿瘤学杂志》和《柳叶刀数字健康》,并在ASCO和RSNA等全球会议上发表。2024年,Lunit收购了Volpara Health Technologies,为无与伦比的协同作用和准确性奠定了基础,尤其是在乳房健康和筛查技术方面。Lunit总部位于韩国首尔,在全球设有办事处网络,领导全球抗击癌症。在以下网址了解更多 lunit.io.

SOURCE Lunit

来源 Lunit

WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?

想在 PRNEWSWIRE.COM 上刊登贵公司的新闻吗?

440k+
440k+

Newsrooms &
新闻编辑室和

Influencers
有影响力的人
9k+
9k+

Digital Media
数字媒体

Outlets
网点
270k+
270k+

Journalists
记者

Opted In
选择加入
GET STARTED
开始吧

译文内容由第三方软件翻译。


以上内容仅用作资讯或教育之目的,不构成与富途相关的任何投资建议。富途竭力但不能保证上述全部内容的真实性、准确性和原创性。
    抢沙发