AKOOL Research Celebrates Two Paper Acceptances at NeurIPS 2024: Advancing Generative AI for Real-World Solutions
AKOOL Research Celebrates Two Paper Acceptances at NeurIPS 2024: Advancing Generative AI for Real-World Solutions
PALO ALTO, Calif., Dec. 12, 2024 /PRNewswire/ -- The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024), one of the world's most prestigious AI conferences, is taking place at the Vancouver Convention Center from Tuesday, December 10 to Sunday, December 15. This year, AKOOL Research is proud to announce the acceptance of two groundbreaking papers, marking a major milestone in their commitment to advancing Generative AI and delivering impactful solutions.
加利福尼亞州帕洛阿爾託,2024年12月12日 /PRNewswire/ -- 第三十八屆神經信息處理系統大會(NeurIPS 2024),這是全球最具聲望的人工智能會議之一,將於2024年12月10日至12月15日在溫哥華會議中心舉行。今年,AKOOL研究團隊自豪地宣佈接受了兩篇開創性論文,標誌着他們在推進生成式人工智能和提供有影響力解決方案方面的重大里程碑。
In collaboration with researchers from UCLA, UCSD, and Salesforce AI Research, the AKOOL Research team has developed an innovative generative framework, the Latent Prompt Transformer (LPT). This novel approach addresses critical design and planning challenges and has been successfully applied to solve two significant real-world problems:
在與加州大學洛杉磯分校、加州大學聖地亞哥分校和賽富時人工智能研究團隊的合作下,AKOOL研究團隊開發了一種創新的生成框架——潛在提示變換器(LPT)。這一新穎的方法解決了關鍵的設計和規劃挑戰,併成功應用於解決兩個重要的現實問題:
AKOOL Research is proud to announce the acceptance of two groundbreaking papers, marking a major milestone.
AKOOL研究團隊自豪地宣佈接受了兩篇開創性論文,標誌着一個重大里程碑。
- Molecule Design – Tackling one of the biggest challenges in AI for Drug Discovery.
- Motion Planning – Addressing a foundational issue in AI for Robotics.
- 分子設計——解決藥物發現中人工智能面臨的最大挑戰之一。
- 運動規劃——解決人工智能在機器人領域的基礎性問題。
AKOOL Research is dedicated to pushing the boundaries of Generative AI, exploring new applications, and creating transformative tools that benefit both industry and society.
AKOOL研究團隊致力於推動生成式人工智能的邊界,探索新應用,並創建惠及行業和社會的變革性工具。
Poster Presentation Details
We invite NeurIPS attendees to explore AKOOL's work in greater depth at the following poster sessions:
海報展示詳情
我們邀請NeurIPS與會者更深入地探索AKOOL的工作,具體在以下海報會議中:
1.Poster Paper
1.海報論文
- Title: Latent Plan Transformer for Trajectory Abstraction: Planning as Latent Space Inference
- Authors: Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang, Sirui Xie, Ying Nian Wu
- Location: West Ballroom A-D, Poster #6602
- Time: Wednesday, Dec 11, 11:00 a.m. PST – 2:00 p.m. PST
- Read full paper
- 標題:潛在計劃變換器用於軌跡抽象:將規劃視爲潛在空間推斷
- 作者:孔德謙、徐德宏、趙明路、龐博、謝建文、安德魯·利薩拉加、黃宇豪、謝思睿、吳英年
- 地點:西舞廳 A-D,海報 #6602
- 時間:12月11日(星期三),上午11:00 PST – 下午2:00 PST
- 閱讀完整論文
2.Spotlight Poster Paper
2.重點海報論文
- Title: Molecule Design by Latent Prompt Transformer
- Authors: Deqian Kong, Yuhao Huang, Jianwen Xie, Edouardo Honig, Ming Xu, Shuanghong Xue, Pei Lin, Sanping Zhou, Sheng Zhong, Nanning Zheng, Ying Nian Wu
- Location: East Exhibit Hall A-C, Poster #2909
- Time: Wednesday, Dec 11, 4:30 p.m. PST – 7:30 p.m. PST
- Read full pager
- 標題:通過潛在提示變換器進行分子設計
- 作者:孔德前,黃宇昊,謝建文,埃杜阿多·霍尼,徐銘,薛雙洪,林佩,週三平,鍾晟,鄭南寧,吳英年
- 地點:東展覽大廳A-C,海報#2909
- 時間:12月11日(星期三),下午4:30 PSt – 7:30 PSt
- 閱讀完整頁面
AKOOL is thrilled to share the latest research with the AI community and look forward to engaging with experts, academics, and industry leaders at NeurIPS. Don't miss this opportunity to learn more about the Latent Prompt Transformer and its potential to transform Generative AI applications.
AKOOL非常高興能夠與人工智能社區分享最新研究,並期待與NeurIPS上的專家、學者和行業領袖進行互動。不要錯過這個了解潛在提示變換器及其在生成人工智能應用中轉變潛力的機會。
Visit AKOOL's research page for more details: .
訪問AKOOL的研究頁面獲取更多詳情:.
About AKOOL Research
AKOOL is dedicated to revolutionizing Generative AI by creating innovative solutions that address real-world challenges. Their cutting-edge research combines interdisciplinary collaboration and state-of-the-art technology to drive impactful outcomes across diverse industries.
關於AKOOL研究
AKOOL致力於通過創造創新解決方案來革新生成式人工智能,從而解決現實世界的挑戰。他們的前沿研究結合了跨學科合作和尖端科技,以推動各個行業的影響力成果。
SOURCE AKOOL
來源 AKOOL
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
想讓貴公司的資訊在PRNEWSWIRE.COM上特色展示嗎?
譯文內容由第三人軟體翻譯。