Telmai Simplifies Data Quality for AI With Native Integrations to Open Table Formats and Automated PII Data Detection
Telmai Simplifies Data Quality for AI With Native Integrations to Open Table Formats and Automated PII Data Detection
Telmai's latest product feature updates enhance data quality workflows, enabling enterprises to accelerate AI adoption while ensuring data reliability and compliance across heterogeneous cloud environments.
Telmai的最新产品功能更新提升了数据质量工作流,使企业能够加快人工智能的应用,同时确保在异构云环境中的数据可靠性和合规性。
SAN FRANCISCO, Dec. 11, 2024 /PRNewswire/ -- Telmai, the AI-powered data quality company, today announced significant enhancements to its enterprise data quality platform, introducing automated workflows designed to accelerate AI adoption. The new capabilities enable organizations to automatically monitor, validate, and optimize data quality across their AI implementations while ensuring regulatory compliance and data reliability at scale.
旧金山,2024年12月11日 /PRNewswire/ -- Telmai这家以人工智能为驱动的数据质量公司今天宣布对其企业数据质量平台进行了重大增强,推出了旨在加速人工智能应用的自动化工作流。这些新功能使组织能够自动监控、验证和优化其人工智能实施中的数据质量,同时确保在大规模环境下的法规合规性和数据可靠性。
As enterprises increasingly rely on AI to power decision-making and innovation, the complexities of managing diverse and vast data ecosystems often hinder success. Inconsistent data quality, manual validation processes, and the risk of sensitive data exposure create roadblocks that slow AI adoption and impact outcomes.
随着企业日益依赖人工智能来推动决策和创新,管理多样化和庞大数据生态系统的复杂性往往阻碍了成功。不一致的数据质量、手动验证过程以及敏感数据暴露的风险造成了减缓人工智能采用的障碍,并影响结果。
Telmai addresses these challenges head-on with updates that streamline operations, enhance accuracy, and scale seamlessly across systems.
Telmai正面临这些挑战,更新内容简化了操作,增强了准确性,并能够在系统间无缝扩展。
Native integration support for Open table formats to power AI workloads
对开放表格式的原生集成支持,以支持人工智能工作负载
Telmai's integration with Apache Trino expands support for open table formats like Apache Iceberg and Delta Lake by providing native data quality monitoring and observability capabilities. These formats are essential for building scalable, modern data architectures that support advanced AI applications. They enable seamless querying, schema evolution, and efficient scalability, which is critical for handling large and dynamic datasets in AI pipelines. Telmai natively supports column-level data quality monitoring without pre-processing or sampling your data by embedding automated data quality checks directly within these open formats. This minimizes operational overhead for users and accelerates AI adoption while ensuring high fidelity in data-driven decision-making.
Telmai与 阿帕奇Trino 扩展对开放表格格式的支持,例如 阿帕奇冰山 和Delta Lake,通过提供原生的数据质量监控和可观察性功能。这些格式对于构建可扩展的现代数据架构至关重要,支持先进的人工智能应用。
Automated detection and prevention of exposure of sensitive data in AI workloads
对于人工智能工作负载中敏感数据的自动检测和防止曝光
Telmai introduces automation for detecting and preventing sensitive data exposure in AI workloads, addressing a critical need for enterprises operating in regulated environments. Through AI-powered pattern recognition, organizations can automatically identify and protect PII data, such as credit card numbers and social security details, across their AI training datasets, ensuring compliance while accelerating development cycles.
Telmai引入了自动化功能,用于检测和防止人工智能工作负载中的敏感数据曝光,满足在受监管环境中运营的企业的迫切需求。 保护个人身份信息数据,如信用卡号码和社保信息,在他们的人工智能训练数据集中,确保合规的同时加快开发周期。
"With these innovations, Telmai is simplifying the complexities of data quality, enabling enterprises to focus on leveraging AI for transformative growth," said Maxim Lukichev, co-founder and chief technology officer at Telmai. "Our automated workflows, open format integrations, and advanced automated workflows provide the foundation for scalable, accurate, and trustworthy AI systems."
“通过这些创新,Telmai正在简化数据质量的复杂性,使企业能够专注于利用人工智能实现变革性增长,” 马克西姆·卢基切夫,Telmai的联合创始人兼首席技术官。“我们的自动化工作流、开放格式集成和爱文思控股自动化工作流为可扩展、准确和可信赖的人工智能系统提供了基础。”
Efficient metadata scanning capabilities that reduce resource overhead
高效的元数据扫描功能减少了资源开销
Telmai's metadata-only scanning capabilities dramatically reduce the computational overhead typically associated with data quality monitoring. Users have the flexibility to perform complete column-level data checks for critical data elements or ensure metadata validation across all data assets. This approach enables comprehensive quality controls across massive datasets without impacting performance or adding significant costs.
Telmai的 仅元数据扫描 能力大幅减少了通常与数据质量监测相关的计算开销。用户可以灵活地针对关键数据元素进行完整的列级数据检查,或者确保所有数据资产的元数据验证。这种方法使得在不影响性能或增加显著成本的情况下,在大规模数据集中实施全面的质量控制成为可能。
Don't let data quality challenges slow your AI adoption. Take the first step towards building reliable AI pipelines. Click here to see how Telmai ensures data accuracy and reliability at scale and achieves AI success.
不要让 数据质量 挑战拖慢了您的人工智能采用。迈出构建可靠人工智能管道的第一步。点击这里查看Telmai如何确保数据的准确性和可靠性,并实现人工智能的成功。
About Telmai
关于Telmai
Telmai is a data observability platform company that enables enterprise data owners to monitor and detect real-time data issues. The platform leverages AI to monitor all data passing through the data pipeline before entering the data warehouse, protecting downstream systems and analytics used for decision-making. Telmai's real-time architecture supports anomaly detection closest to data sources and works over complex data types with native support for nested and multi-valued attributes. For more information, please visit Telmai.
Telmai是一家数据可观察性平台公司,使企业数据拥有者能够监控和检测实时数据问题。该平台利用人工智能监控所有通过数据管道传输的数据,确保数据在进入数据仓库之前,保护下游-脑机系统和用于决策分析的数据。Telmai的实时架构支持 异常检测 最接近数据源,并对复杂数据类型提供本机支持,支持嵌套和多值属性。有关更多信息,请访问 Telmai.
Contact: Steve Carman | [email protected]
联系方式:Steve Carman | [email protected]
SOURCE Telmai
来源:Telmai
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
想让贵公司的资讯在PRNEWSWIRE.COM上特色展示吗?
译文内容由第三方软件翻译。