Five new studies span three focus areas for LTCM devices: digital engagement and patient satisfaction, arrhythmia patterns during sleep and activity, and the potential health care resource and economic impact of early arrhythmia detection in patients with type 2 diabetes and COPD
SAN FRANCISCO, Nov. 18, 2024 (GLOBE NEWSWIRE) -- iRhythm Technologies, Inc. (NASDAQ:IRTC) today announced the results of five new studies presented at the American Heart Association's 2024 Scientific Sessions in Chicago, IL. The findings underscore iRhythm's commitment to advancing ambulatory cardiac monitoring services to improve patient outcomes, enhance healthcare resource utilization, and provide access to affordable care, including for patients with chronic conditions.
The five studies presented by iRhythm span three focus areas for long-term continuous monitoring (LTCM): patient engagement and satisfaction through digital tools and patient-centered product enhancements, evaluating arrhythmia patterns during periods of sleep and activity, and assessing the potential healthcare resource and economic impact of early arrhythmia detection in patients with type 2 diabetes and chronic obstructive pulmonary disease (COPD).
"These new findings underscore iRhythm's commitment to rigorous scientific evidence," said Mintu Turakhia, MD, iRhythm's Chief Medical and Scientific Officer and EVP of Product Innovation. "Our data demonstrates the significant health economic benefits of early arrhythmia detection in often-overlooked conditions like diabetes and COPD, highlights greater patient engagement through our patient-centered digital tools that complement our services, and reveals distinct arrhythmia patterns associated with sleep and activity."
LTCM Patient Engagement and Satisfaction Through Digital Tool and Product Enhancements
Two studies validated the impact of digital health tools on improving patient compliance with timely device return and demonstrate the value of using patient-centric feedback to guide enhancements in the latest Zio monitor.
- "Digital Engagement With a Patient Smartphone App and Text Messaging is Associated with Increased Compliance in Patients Undergoing Long-Term Continuous Ambulatory Cardiac Monitoring"
- "Feasibility of Point-Of-Wear Patient Satisfaction Surveys to Validate Patient-Centered Product Enhancements: Results From Over 300,000 Patients for Long-Term Ambulatory Cardiac Monitoring"
Evaluating Sleep and Activity Arrhythmia Patterns Using LTCM
Two studies assessed the feasibility and clinical utility of using the Zio system to monitor arrhythmias in relation to sleep and activity patterns.1 Analyzing and classifying arrhythmia occurrences during sleep and physical exertion provides insights that may inform more personalized arrhythmia management.
- "Determining the Accuracy of Sleep and Activity Patterns in Patients Undergoing Long-Term Ambulatory ECG Monitoring"
- "Characterization of Arrhythmia Occurrence During Sleep and Activity in Patients Undergoing Long-Term Continuous Ambulatory ECG Monitoring"
Potential Healthcare Resource and Economic Value of Early Arrhythmia Detection in Patients with Type 2 Diabetes and Chronic Obstructive Pulmonary Disease (COPD)
This retrospective analysis of medical claims data examined the healthcare resource burden and medical costs of managing undiagnosed and untreated arrhythmias in patients with type 2 diabetes (T2D) and chronic obstructive pulmonary disease (COPD). The analysis was conducted by Eversana (Overland Park, KS, USA) and the preliminary findings suggest that early detection with arrhythmia monitoring devices has the combined potential to help prevent serious outcomes like stroke and heart failure and significantly reduce acute care utilization and related costs in these populations.
- "Real World Evidence on Health Care Resources Utilization and Economic Burden of Arrhythmias in Patients with Type 2 Diabetes (T2D) and Chronic Obstructive Pulmonary Disease (COPD)"
These data, presented at the American Heart Association's 2024 Scientific Sessions, are part of iRhythm's comprehensive clinical evidence program, encompassing over 100 original research publications2 and insights from over 1.5 billion hours of curated heartbeat data.2 This ongoing commitment reflects iRhythm's dedication to expanding clinical evidence that supports improved patient outcomes.
iRhythm's AHA Presentations Details:
"Digital engagement with a patient smartphone app and text messaging is associated with increased compliance in patients undergoing long-term continuous ambulatory cardiac monitoring" study
This study sought to determine if two optional direct-to-patient digital interventions, the MyZio smartphone app and short messages services (SMS) text notifications, impacts patient compliance (i.e., activation, wear, and device return within 45 days) in patients who self-applied and activated a Zio 14-day patch-based long-term continuous ambulatory monitoring (LTCM) device shipped directly to their home. Distribution of the use of digital tools and compliance outcomes was evaluated in 169,131 patients. Device activation, usage, and return compliance was highest (94.8%) when both the app and text messaging were used vs. 74.6% in cases where neither digital intervention was used. Opting in to SMS text was associated with compliance improvement vs. no digital intervention but was inferior to app use. These data support the use of patient digital health interventions in home-based diagnostics and underscore the importance of post-implementation evaluation of outcomes.
"Feasibility of point-of-wear patient satisfaction surveys to validate patient-centered product enhancements: results from over 300,000 patients for long-term ambulatory cardiac monitoring" survey
Researchers sought to understand the feasibility and value of collecting patient survey data at the point of care to assess quality improvements associated with use of a novel 14-day patch-based long-term continuous ambulatory ECG monitor (LTCM). Specifically, the study compared product experience and patient satisfaction associated with the prior generation LTCM (Zio XT) to that of a next-generation, FDA-cleared LTCM product (Zio monitor) designed with patient-centered features, including a more breathable adhesive, waterproof housing,3,4 thinner profile, and lighter weight.2 Among 334,054 respondents, the new LTCM was associated with a greater proportion of affirmative responses across all survey categories, including a 14-percentage point improvement in wear comfort as compared to the prior generation device (79.1% vs. 64.7%, p<0.001). The finding demonstrated patient survey data for post-market quality assessment is feasible for digital health technologies, in this case leading to over 300,000 total respondents in one year. Measures of patient satisfaction were higher with the new device, which may be due to patient-centered product enhancements.
"Determining the Accuracy of Sleep and Activity Patterns in Patients Undergoing Long-Term Ambulatory ECG Monitoring" study
Researchers sought to develop and assess performance of an algorithm to classify periods of sleep, activity (>2mph walking), and inactivity1 using a novel ambulatory ECG (AECG) patch (Zio monitor) with embedded accelerometry. A prospective clinical study enrolled participants across four American Academy of Sleep Medicine- (AASM) qualified sleep centers to support algorithm training and validation. Eighty-one (81) study participants wore the Zio monitor AECG patch and a commercially available actigraphy reference device simultaneously over a 14-day study period, which included in-clinic overnight polysomnography (PSG) sleep testing and a 6-minute walk test. Data acquired were split into training (n=40) and validation (n=41) sets. Feature and model selection utilized five-fold cross-validation on the training set, focusing on total activity and body angle. Algorithm sensitivity and specificity (assessed over 1-minute epochs vs. PSG reference) in sleep detection were 88.8% and 54.0%, respectively for the validation set. Sensitivity and specificity in activity detection were 97.0% and 100%, respectively. Study authors concluded the assessment of sleep and activity during AECG is feasible, with performance comparable to FDA-cleared actigraphy and consumer devices.5 This feature offers insights into patient wellness patterns, highlighting its potential for personalized healthcare monitoring.
"Characterization of Arrhythmia Occurrence During Sleep and Activity in Patients Undergoing Long-Term Continuous Ambulatory ECG Monitoring" study
Researchers sought to quantify the occurrence of arrhythmias detected by long-term (≤14 days) continuous ambulatory ECG monitoring (LTCM) during periods of sleep, activity and inactivity.1 The analysis is the largest study of its kind, and included 23,962 patients (57.7% female, age 60.9±18.0 years) who underwent monitoring with a next generation LTCM (Zio monitor) device. An Al algorithm previously developed and validated was used to classify periods of sleep and activity using LTCM accelerometry data (see study Accuracy of Sleep and Activity Patterns study described above). Rhythms were classified by an FDA-cleared deep learning algorithm,6 confirmed by a cardiographic technician and time-aligned to the algorithm-generated sleep/wake and activity/inactivity labels. Odds ratios (OR) associated with time in arrhythmia for sleep and activity periods were calculated by rhythm type. Among the rhythms having the highest association with sleep (vs. wake) were pause (OR=2.58; 95% CI 2.55-2.60) and 3rd degree heart block, (OR=1.37; 95% CI 1.37-1.37). Notably, the analysis identified ventricular tachycardia (VT) was among the arrhythmias least likely to occur during sleep (OR=0.51; 95% Cl 0.50-0.51). Ventricular tachycardia and 3rd degree heart block had the highest OR associated with periods of activity. Results demonstrate the feasibility of integrating sleep and activity labeling with LTCM findings and the potential to give context to arrhythmias, such onset or termination during sleep, wake, or exertion.
"Real World Evidence on Health Care Resources Utilization and Economic Burden of Arrhythmias in Patients with Diabetes and COPD" study
This study examined healthcare resource utilization (HCRU) and medical costs of managing arrhythmias in T2D and COPD, and the potential impact of early detection on the rate of hospitalization and ER visits. Research included a retrospective claims analysis using the Merative MarketScan and the Symphony Integrated Dataverse databases. Study participants were > 18 years with claims for T2D or COPD or both T2D and COPD (T2D-COPD) and assigned into groups: Target: patients without prior history of arrythmias, followed by arrythmias claims. Control: patients with either of the conditions, but without arrhythmia claims. Target and control were matched 1:1 on demographic, year of first episode of arrhythmia, risk (ECI, DSI, Goki criteria). HCRU and medical cost drivers over 24 months were analyzed. HCRU of patients with the primary comorbidity and an associated arrhythmia was compared to those without an arrhythmia. The total cost of care per patient / year was significantly higher for all target patients compared to control (T2D $34,171/ $18,687; COPD $37,719/$25,656: T2D COPD $46,484/$30,824). The per patient / year cost of hospitalization was higher in the target patient's vs control (T2D $28,316/$19,439; COPD $25,098/$17,906; T2D COPD $28,694/$19,352). Much of this cost difference was also higher in the target patient's vs control in the 30 days post index date (arrhythmia diagnosis) (T2D $18,414/$1,928; COPD $17,920/$3,278; T2D COPD $18,415/$4,162). ER cost per patient/year was 35%-50% higher in the target cohort. Arrhythmia patients were hospitalized more than 2x per 1,000 cohort patients per year than non-arrhythmia patients, and of the diabetes, COPD and combined cohorts, 49%, 68%, and 74% of the patients were hospitalized respectively. The length of stay increased by 2-5 days for arrhythmia patients, with the diabetes, COPD and combined cohorts having an average length of stay of 10, 13, and 16 days respectively. The rate of ER visits were more than 2x for the arrhythmia cohort relative to the non-arrhythmia cohort, and of the diabetes, COPD and combined cohorts, 66%, 83%, and 86% of the patients have been hospitalized respectively. The preliminary study findings suggest that arrythmias significantly increase HCRU and total cost for T2D and COPD, particularly in patients requiring ER visits and hospitalization, and that early detection with arrhythmia monitoring devices, could reduce the utilization of acute care and associated costs.
About iRhythm Technologies
iRhythm is a leading digital health care company that creates trusted solutions that detect, predict, and prevent disease. Combining wearable biosensors and cloud-based data analytics with powerful proprietary algorithms, iRhythm distills data from millions of heartbeats into clinically actionable information. Through a relentless focus on patient care, iRhythm's vision is to deliver better data, better insights, and better health for all.
Media Contact
Kassandra Perry
irhythm@highwirepr.com
Investor Contact
Stephanie Zhadkevich
investors@irhythmtech.com
1 The accelerometer data and the sleep and activity classification algorithm presented in this study are intended exclusively for research purposes and are not available for any commercial use.
2 Data on file. iRhythm Technologies, 2023.
3 Data on file. iRhythm Technologies, 2017, 2023.
4 The Zio monitor device should not be submerged in water. During a bath, keep the device above water. Please refer to the Zio monitor labeling instructions or Patient Guide for the full set of details.
5 Chinoy ED, Cuellar JA, Huwa KE, Jameson JT, Watson CH, Bessman SC, Hirsch DA, Cooper AD, Drummond SPA, Markwald RR. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep. 2021 May 14;44(5):zsaa291.
6 Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019 Jan;25(1):65-69. Current FDA-cleared rhythm classification algorithm: K222389.
五項新研究涵蓋了LTCm設備的三個重點領域:互聯網醫療參與和患者滿意度、睡眠和活動期間的心律失常模式,以及在2型糖尿病和慢性阻塞性肺疾病(COPD)患者中早期心律失常檢測的潛在醫療資源和經濟影響。
舊金山,2024年11月18日(環球新聞通訊社)——iRhythm Technologies, Inc.(納斯達克:IRTC)今日公佈了在美國心臟協會2024年科學會議上所展示的五項新研究的結果。研究結果強調了iRhythm致力於推進可穿戴心臟監測服務,以改善患者結果,提升醫療資源利用效率,併爲包括慢性病患者在內的患者提供可負擔的護理。
iRhythm所展示的五項研究涵蓋了長期持續監測(LTCM)的三個重點領域:通過數字工具和以患者爲中心的產品增強患者參與和滿意度、評估睡眠和活動期間的心律失常模式,以及評估在2型糖尿病和慢性阻塞性肺疾病(COPD)患者中早期心律失常檢測的潛在醫療資源和經濟影響。
iRhythm的首席醫療和科學官及產品創新執行副總裁Mintu Turakhia醫生表示:「這些新發現突顯了iRhythm對嚴格科學證據的承諾。我們的數據顯示,在常被忽視的疾病如糖尿病和COPD中,早期心律失常檢測的顯著健康經濟效益、通過我們的以患者爲中心的數字工具提高患者參與度,以及與睡眠和活動相關的明顯心律失常模式。」
通過數字工具和產品增強提升LTCm患者參與和滿意度
兩項研究驗證了互聯網醫療工具在提高患者及時歸還設備遵從性方面的影響,並展示了使用以患者爲中心的反饋來指導最新Zio監視器改進的價值。
- "與患者智能手機應用和文本消息的數字互動與長期持續性心臟監測患者遵從性增加相關"
- "佩戴點患者滿意度調查的可行性,以驗證以患者爲中心的產品改進:來自超過300,000名長期動態心臟監測患者的結果"
使用LTCm評估睡眠和活動心律失常模式
兩項研究評估了使用Zio系統監測與睡眠和活動模式相關的心律失常的可行性和臨床效用。分析和分類睡眠和身體活動期間的心律失常發生情況提供了可能有助於更個性化的心律失常管理的見解。
- "判斷長期動態心電圖監測患者的睡眠和活動模式的準確性"
- "慢性持續重症監測患者在睡眠和活動中心律失常發生特徵"
早期心律失常檢測在2型糖尿病和慢性阻塞性肺疾病(COPD)患者中的潛在醫療資源和經濟價值
這項對醫療索賠數據的回顧性分析考察了在未診斷和未治療的2型糖尿病(T2D)和慢性阻塞性肺疾病(COPD)患者中,管理心律失常的醫療資源負擔和醫療費用。這項分析由Eversana(美國堪薩斯州奧弗蘭公園)進行,初步發現表明,使用心律失常監測設備的早期檢測具有潛力,能夠幫助預防中風和心力衰竭等嚴重後果,並顯著減少這些人群的急性護理利用及相關費用。
- "關於2型糖尿病(T2D)和慢性阻塞性肺疾病(COPD)患者心律失常的醫療資源利用和經濟負擔的實證證據"
這些數據在2024年美國心臟協會科學會議中發佈,是irhythm技術全面臨床證據計劃的一部分,該計劃涵蓋了超過100項原創研究出版物和來自超過15億小時的精選心跳數據的見解。這一持續的承諾反映了irhythm對擴展支持改善患者結果的臨床證據的關注。
iRhythm的AHA演示細節:
「與患者智能手機應用程序和短信的數字互動與接受長期連續動態心臟監測的患者的依從性提高有關」的研究
本研究旨在判斷兩個可選的直接面向患者的數字干預措施,即MyZio智能手機應用程序和短消息服務(SMS)通知,是否對自行貼敷和激活Zio 14天補丁式長期連續動態監測(LTCM)設備的患者的依從性(即,激活、佩戴和在45天內歸還設備)產生影響。評估了169,131名患者中數字工具的使用和依從性結果。使用智能手機應用程序和短信時,設備激活、使用和歸還的依從性最高(94.8%),而在未使用任何數字干預措施的情況下爲74.6%。選擇接收短信(SMS)與依從性提高相關,但不及使用應用程序的效果。這些數據支持在家庭診斷中使用患者數字醫療干預措施,並強調了實施後結果評估的重要性。
「佩戴點患者滿意度調查以驗證以患者爲中心的產品增強的可行性:來自30萬名患者的長期動態心臟監測的結果」調查
研究人員試圖了解在護理現場收集患者調查數據以評估與使用新型14天補丁式長期連續心電監測儀(LTCM)相關的質量改進的可行性和價值。具體而言,研究比較了與先前一代LTCM(Zio XT)相關的產品體驗和患者滿意度與FDA批准的下一代LTCM產品(Zio monitor)的相關性,該產品設計了以患者爲中心的特徵,包括更透氣的粘合劑、防水外殼、減薄機的輪廓和更輕的重量。在334,054名受訪者中,新型LTCM在所有調查類別中都與更大比例的肯定回答相關,包括在佩戴舒適度上相比於先前一代設備改善了14個百分點(79.1%對64.7%,p<0.001)。這一發現表明,用於後市場質量評估的患者調查數據對於互聯網醫療技術是可行的,在這種情況下,導致一年內總共超過300,000名受訪者。新設備的患者滿意度較高,這可能歸因於以患者爲中心的產品增強。
"在進行長期帶走心電監測的患者中確定睡眠和活動模式的準確性"研究
研究人員試圖開發和評估一種算法,以使用一款新型的便攜心電圖(AECG)補丁(Zio monitor)和嵌入的加速度計對睡眠、活動(>2mph步行)和不活動時段進行分類。前瞻性臨床研究招募了來自四個美國睡眠醫學學會(AASM)認證睡眠中心的參與者以支持算法的訓練和驗證。81名研究參與者在爲期14天的研究期間,同時佩戴Zio monitor AECG補丁和商用活動監測參考設備,包括臨床內過夜多導睡眠監測(PSG)測試和6分鐘步行測試。獲取的數據被分爲訓練集(n=40)和驗證集(n=41)。特徵和模型選擇利用五折交叉驗證在訓練集中進行,重點關注總活動和身體角度。算法在睡眠檢測中的敏感性和特異性(與PSG參考相比,評估時間爲1分鐘)在驗證集中分別爲88.8%和54.0%。在活動檢測中的敏感性和特異性分別爲97.0%和100%。研究作者得出結論,評估AECG期間的睡眠和活動是可行的,性能與FDA批准的活動監測設備和消費設備相當。該功能提供了關於患者健康模式的洞察,突顯了其在個性化醫療監測中的潛力。
"在進行長期連續動態心電圖監測的患者中,睡眠和活動期間心律失常發生的特徵" 研究
研究人員旨在量化在睡眠、活動和非活動期間,通過長期(≤14天)連續動態心電圖監測(LTCM)檢測到的心律失常的發生率。該分析是同類研究中規模最大的一項,包含了23,962名患者(57.7%的女性,平均年齡爲60.9±18.0歲),他們使用下一代LTCm(Zio監測器)設備進行了監測。使用之前開發和驗證的人工智能算法,根據LTCm加速度數據(請參見上述研究"睡眠和活動模式的準確性")對睡眠和活動期進行了分類。心律由FDA批准的深度學習算法進行分類,經過心電圖技術員確認,並與算法生成的睡眠/覺醒和活動/非活動標籤進行了時間對齊。根據心律類型計算了與心律失常在睡眠和活動期間的時間相關的比值比(OR)。在與睡眠(與覺醒相比)關聯最大的心律中,暫停(OR=2.58;95% CI 2.55-2.60)和三度心臟傳導阻滯(OR=1.37;95% CI 1.37-1.37)尤爲顯著。值得注意的是,分析顯示室性心動過速(VT)是睡眠期間最不容易發生的心律失常之一(OR=0.51;95% Cl 0.50-0.51)。室性心動過速和三度心臟傳導阻滯在活動期間的比值比最高。結果表明,將睡眠和活動標記與LTCm發現集成的可行性,以及爲心律失常提供背景的潛力,例如在睡眠、覺醒或用力時的發作或終止。
"糖尿病和慢性阻塞性肺病患者心律失常的醫療資源利用和經濟負擔的真實世界證據" 研究
該研究考察了2型糖尿病(T2D)和慢性阻塞性肺病(COPD)患者管理心律失常的醫療資源利用(HCRU)和醫療費用,以及早期檢測對住院和急診就診率的潛在影響。研究包括使用Merative MarketScan和Symphony Integrated Dataverse數據庫的回顧性索賠分析。研究參與者年齡超過18歲,索賠涉及T2D或COPD或同時涉及T2D和COPD(T2D-COPD),並分爲兩個組別:目標組:無心律失常病史的患者,後面接着心律失常索賠;對照組:具有其中任何一種情況,且沒有心律失常索賠的患者。目標組和對照組在人口統計學、首次心律失常發作年份、風險(ECI、DSI、Goki標準)上1:1匹配。分析了24個月內的醫療資源利用和醫療費用驅動因素。有心律失常的主要合併症患者的HCRU與沒有心律失常的患者進行了比較。所有目標患者的每年護理總費用顯著高於對照組(T2D:$34,171/$18,687;COPD:$37,719/$25,656;T2D COPD:$46,484/$30,824)。目標患者的每年住院費用高於對照組(T2D:$28,316/$19,439;COPD:$25,098/$17,906;T2D COPD:$28,694/$19,352)。在索引日期(心律失常診斷)後30天內,目標患者的費用差異也高於對照組(T2D:$18,414/$1,928;COPD:$17,920/$3,278;T2D COPD:$18,415/$4,162)。目標組的每年急診費用高出35%-50%。心律失常患者每年每千名隊列患者住院次數是非心律失常患者的兩倍以上,而在糖尿病、COPD和聯合隊列中,49%、68%和74%的患者住院。心律失常患者的住院時間比正常患者多2-5天,其中糖尿病、COPD和聯合隊列的平均住院時間分別爲10天、13天和16天。相對於非心律失常隊列,心律失常隊列的急診就診率超過兩倍,在糖尿病、COPD和聯合隊列中,分別有66%、83%和86%的患者住院。初步研究結果表明,心律失常顯著增加了2型糖尿病和慢性阻塞性肺病患者的HCRU和總費用,特別是在需要急救就診和住院的患者中,且通過心律失常監測設備的早期檢測可能減少急性護理及相關費用的利用。
關於irhythm technologies
iRhythm是一家領先的數字健康保健公司,創建可靠的解決方案,檢測,預測和預防疾病。將可穿戴生物傳感器和基於雲的數據分析與強大的專有算法相結合,iRhythm將數百萬心跳的數據提煉爲臨床可操作的信息。通過對患者護理的不懈關注,iRhythm的願景是爲所有人提供更好的數據,更好的見解和更好的健康。
媒體聯繫
Kassandra Perry
irhythm@highwirepr.com
投資者聯繫人
Stephanie Zhadkevich
investors@irhythmtech.com
本研究中呈現的加速度計數據和睡眠及活動分類算法僅供研究目的使用,不可用於任何商業用途。
文件數據。irhythm technologies,2023。
文件數據。irhythm technologies,2017,2023。
Zio監測設備不能浸入水中。在洗澡時,請保持設備在水面以上。有關詳細信息,請參閱Zio監測儀標籤說明或患者指南。
5 Chinoy ED, Cuellar JA, Huwa KE, Jameson Jt, Watson CH, Bessman SC, Hirsch DA, Cooper AD, Drummond SPA, Markwald RR. 七款消費型睡眠追蹤設備與多導睡眠監測的性能比較。睡眠。2021年5月14日;44(5):zsaa291。
6 Hannun AY, Rajpurkar P, Haghpanahi m, Tison GH, Bourn C, Turakhia MP, Ng AY. 使用深度神經網絡在門診心電圖中進行心臟病水平的心律失常檢測和分類。自然醫學。2019年1月;25(1):65-69。目前FDA批准的心律分類算法:K222389。