Sight Machine's Factory Namespace Manager Converts Chaos of Manufacturing Data Names Into Corporate-Standard Naming Systems
Sight Machine's Factory Namespace Manager Converts Chaos of Manufacturing Data Names Into Corporate-Standard Naming Systems
Fine-Tuned Version of Microsoft's Phi-3.5 is One of the First Small Language Models (SLM) for Manufacturing
微軟的Phi-3.5的Fine-Tuned版本是製造業的首批小語言模型(SLM)之一
SAN FRANCISCO, Nov. 13, 2024 /PRNewswire/ -- Sight Machine, provider of the leading platform for data-driven manufacturing and industrial AI, today introduced Factory Namespace Manager, one of the first AI small language models (SLM) for manufacturing. The AI model tackles a core data governance challenge: mapping the multitude of factory data naming schemas into enterprise-wide unified namespaces or corporate data dictionaries.
舊金山,2024年11月13日/美通社/ - 提供領先的數據驅動製造和工業人工智能平台的Sight Machine今天推出了Factory Namespace Manager,這是製造業首批AI小語言模型(SLM)之一。這款AI模型解決了一個核心數據治理挑戰:將衆多工廠數據命名模式映射到企業統一的命名空間或公司數據字典。
Factory Namespace Manager is one of the first partner-enabled adapted AI models for manufacturing offered within the Azure AI model catalog, which Microsoft announced today. Factory Namespace Manager uses AI to fill a crucial gap in the technology needed to create a unified namespace: mapping between the original data field names and the corporate standard, enabling manufacturers to integrate factory data with enterprise data systems for end-to-end optimization.
Factory Namespace Manager是首批適用於製造業的夥伴啓用的調整後的人工智能模型之一,可以在Azure AI模型目錄中找到,微軟今天宣佈了這一消息。Factory Namespace Manager利用人工智能填補了在創建統一命名空間所需技術的一個關鍵空白:對原始數據字段名稱和公司標準之間的映射,從而使製造商能夠將工廠數據與企業數據系統集成,實現端到端優化。
SLMs Are More Cost-Effective to Train and Use
SLM的培訓和使用成本更具成本效益
Factory Namespace Manager, which Sight Machine will demonstrate at next week's Microsoft Ignite conference in Chicago, is a customized, fine-tuned version of Microsoft's Phi-3.5 small language model. Unlike large language models (LLMs) – general purpose software trained on vast amounts of data – SLMs are used to focus on specific types of work and require less computing resources, offering strong performance at low cost and low latency.
Sight Machine將在下週的芝加哥微軟Ignite會議上展示Factory Namespace Manager,這是微軟Phi-3.5小語言模型的定製、精心調整版本。與訓練在大量數據上的通用軟件-大語言模型(LLMs)不同,SLMs專注於特定類型的工作,需要更少的計算資源,具有較低的成本和低延遲,性能強勁。
"Our solution addresses a widespread challenge in the manufacturing industry, converting decentralized naming systems into a single corporate standard," said Kurt DeMaagd, Sight Machine Chief AI Officer and Co-Founder. "This has become an acute problem as more clients push factory plant floor data to the cloud, removing data from its original context, and making the management of that data increasingly difficult."
"我們的解決方案解決了製造業面臨的一個普遍挑戰,將分散的命名系統轉換爲單一公司標準," Sight Machine首席人工智能官兼聯合創始人Kurt DeMaagd表示。"隨着越來越多的客戶將工廠車間數據推送到雲端,使得數據脫離其原始背景並導致管理數據變得越來越困難,這已經成爲一個迫切的問題。"
Tackling Complex Factory Data Environments
處理複雜的工廠數據環境
Individual plants often have thousands of data sources from multiple generations of machinery that are frequently 10 or 20 years old, and typically the data streams aren't labeled in a standardized format that makes clear where the data comes from and what it represents. In order to perform analytics across lines, processes and plants (and even between otherwise-identical machines with different data labeling), companies need a standardized way to identify similar data. Today, creating this translation layer requires a heavy investment of time by subject matter experts with extensive knowledge on the nuances of both the legacy and the target naming schemas, and is thus typically done manually for a small subset of data.
各個工廠通常擁有來自多代機械的數千個數據源,這些機械通常已有10或20年的歷史,而數據流通常沒有以標準化格式標記,無法清晰地表明數據的來源和代表什麼。爲了在生產線、工藝和工廠之間(甚至是不同數據標籤的相同機器之間)進行分析,公司需要一種標準化的方法來識別相似的數據。如今,創建這種翻譯層需要極具專業知識、熟知傳統和目標命名模式的專家大量投入時間,因此通常僅對一小部分數據進行手動處理。
"I've spoken to dozens of industrial companies about their current and potential use of AI in factory operations and the overwhelming feedback I hear and see in IDC survey data is that most companies are struggling to leverage AI effectively at scale due to the condition of their data," said Jonathan Lang, Research Director of Worldwide IT/OT Convergence Strategies at IDC. "They have this dilemma that contextually similar data is formatted in multiple ways and is difficult to source and normalize amidst a complete lack of historical governance and data architecture. What I've heard loud and clear is that technology that helps to solve this challenge and reduce the labor requirement to decipher data will be readily adopted."
「我已經與數十家工業公司交談,了解他們在工廠運營中當前和潛在的人工智能應用,並我在IDC調查數據中看到的壓倒性反饋是,大多數公司因數據狀況而難以有效地大規模利用人工智能。」IDC的全球IT / Ot融合策略研究主管Jonathan Lang說。「他們面臨這樣一個困境,即上下文相似的數據以多種方式格式化,難以獲取和規範化,而在完全缺乏歷史治理和數據架構的情況下更加困難。我清楚地聽到,能夠幫助解決這一挑戰並減少解讀數據所需的人工成本的技術將被迅速採納。」
The bottling company Swire Coca-Cola USA plans to use Factory Namespace Manager to efficiently map its extensive PLC and plant floor data into its corporate data namespace.
瓦特可口可樂美國公司打算利用工廠名稱空間管理器將其廣泛的PLC和車間數據有效地映射到公司數據命名空間。
"We are working with Factory Namespace Manager to recognize patterns in the data we've manually translated, and then applying the patterns to the rest of our factory data," said Bharathi Rajan, VP of Data & Insights at Swire Coca-Cola USA. "This will make it much easier to get relevant data to frontline workers, to inform decision making, and to integrate production insights into other parts of the company such as supply chain. This is one of the most useful applications of AI we've seen in manufacturing, and we're excited to put it to work."
「我們正在與工廠名稱空間管理器合作,識別我們手動翻譯的數據中的模式,然後將這些模式應用到我們工廠其餘的數據中。」瓦特可口可樂美國公司的數據與洞察副總裁Bharathi Rajan說。「這將使爲基層員工提供相關數據、指導決策以及將生產洞察融入供應鏈等公司其他部分變得更容易。這是我們在製造業中看到的最有用的人工智能應用之一,我們很高興將其投入使用。」
"The collaboration between Microsoft and Sight Machine will give manufacturing organizations the ability to build AI solutions through Azure AI Studio and Microsoft Copilot Studio that deliver real value and advance business transformation," said Satish Thomas, Corporate Vice President, Business & Industry Solutions, Microsoft. "Factory Namespace Manager applies SLM AI technology to a high-impact use case with strong potential ROI for companies pursuing data-driven manufacturing."
「微軟與Sight Machine的合作將使製造組織能夠通過Azure AI Studio和Microsoft Copilot Studio構建提供實際價值並推動業務轉型的人工智能解決方案。」微軟的企業副總裁Satish Thomas說。「工廠名稱空間管理器將SLm人工智能技術應用於一個高影響的使用案例,對於追求數據驅動製造的公司具有較大的潛在回報率。」
How Sight Machine's Manufacturing Data Platform Employs AI Techniques
如何Sight Machine的製造數據平台利用人工智能技術
AI is interwoven into Sight Machine's Manufacturing Data Platform, which uses machine learning and other AI techniques to identify and optimize how machine settings, raw materials and production practices interact to determine throughput, quality, sustainability and other key manufacturing metrics.
人工智能已經融入了Sight Machine的製造數據平台,該平台利用機器學習和其他人工智能技術來識別和優化機器設置、原材料和生產實踐之間的相互作用,以確定吞吐量、質量、可持續性和其他關鍵的製造指標。
Sight Machine's AI offerings include Factory CoPilot, which uses generative AI technology to offer an intuitive, "ask the expert" experience for all manufacturing stakeholders. Built using Microsoft Azure OpenAI Service, Factory CoPilot can automatically summarize all relevant data and information about production in real-time (e.g., for daily meetings) and generate user-friendly reports, emails, charts and other content (in any language) about the performance of any machine, line or plant across the manufacturing enterprise, based on contextualized data in the Sight Machine platform.
Sight Machine的人工智能產品包括Factory CoPilot,它使用生成式人工智能技術爲所有制造利益相關者提供直觀的"詢問專家"體驗。利用Microsoft Azure OpenAI服務構建的Factory CoPilot可以實時自動總結關於生產的所有相關數據和信息(例如,用於每日會議),並生成關於製造企業中任何機器、生產線或工廠的性能的用戶友好報告、電子郵件、圖表和其他內容(以任何語言提供),這些內容基於Sight Machine平台中的上下文數據。
Sight Machine also offers Blueprint, AI-driven tag-to-asset mapping software for clients that have large volumes of poorly identified data sources. It uses AI to map each data source (tag) to a specific asset (machine). Sight Machine built Blueprint in partnership with Microsoft and NVIDIA.
Sight Machine還提供Blueprint,這是一種基於人工智能的標籤到資產映射軟件,用於客戶具有大量標識不清的數據來源。它利用人工智能將每個數據源(標籤)映射到特定資產(機器)。Sight Machine與Microsoft和英偉達合作構建了Blueprint。
Learn More
了解更多
To learn more about Factory Namespace Manager, please go to .
要了解有關Factory Namespace Manager的更多信息,請訪問。
About Sight Machine
關於Sight Machine
Sight Machine provides the leading platform for data-driven manufacturing and industrial AI, helping global manufacturers increase profitability, productivity and sustainability. Sight Machine's Manufacturing Data Platform creates a common data foundation by capturing and structuring data from the entire factory to deliver a systemwide view of the manufacturing process. With insights powered by artificial intelligence, manufacturers can now optimize across their production processes and factory networks, and extend the impact to their broader supply and value chains. Sight Machine has offices in San Francisco and Ann Arbor, Mich. ().
Sight Machine提供了領先的面向數據驅動製造和工業人工智能的平台,幫助全球製造商提高盈利能力、生產力和可持續性。Sight Machine的製造數據平台通過捕獲和整理整個工廠的數據來創建一個共同的數據基礎,以提供對製造過程的系統性全面視圖。藉助人工智能驅動的見解,製造商現在可以優化其生產流程和工廠網絡,並將影響擴展到更廣泛的供應和價值鏈。Sight Machine在舊金山和密歇根州安娜堡設有辦事處。
Sight Machine Press Contact: [email protected]
Sight Machine媒體聯繫人:[email protected]
SOURCE Sight Machine Inc.
資源來自Sight Machine公司
WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?
想要您公司的新聞在PRNEWSWIRE.COM上特色呈現嗎?
譯文內容由第三人軟體翻譯。