share_log

Independent Modeling Studies From MIT and SIA and Results From Previous Testing Presented at TopFuel 2024 Conference Further Validate That Lightbridge Fuel Has Safety Advantages Over Current Nuclear Fuel

Independent Modeling Studies From MIT and SIA and Results From Previous Testing Presented at TopFuel 2024 Conference Further Validate That Lightbridge Fuel Has Safety Advantages Over Current Nuclear Fuel

麻省理工學院和新加坡航空公司的獨立建模研究,以及之前測試的結果在2024年TopFuel會議上展示,進一步驗證了lightbridge燃料相對於當前核燃料的安全優勢。
GlobeNewswire ·  10/28 20:00

RESTON, Va., Oct.  28, 2024  (GLOBE NEWSWIRE) -- Lightbridge Corporation ("Lightbridge") (Nasdaq: LTBR), an advanced nuclear fuel technology company, today shares insightful findings from three technical papers presented at the TopFuel 2024 Conference in Grenoble, France. These papers, produced by Massachusetts Institute of Technology (MIT), Structural Integrity Associates (SIA), and Lightbridge further validate the enhanced safety and performance of Lightbridge Fuel, particularly its improved performance under extreme conditions.

2024年10月28日,弗吉尼亞州雷斯頓(RESTON)(美通社)——先進核燃料技術公司Lightbridge Corporation(「Lightbridge」)(納斯達克:LTBR)在法國格勒諾布爾舉辦的TopFuel 2024大會上分享了三篇技術論文的深度研究成果。這些論文由麻省理工學院(MIT)、結構完整性協會(SIA)和Lightbridge撰寫,進一步驗證了Lightbridge燃料的增強安全性和性能,特別是在極端條件下的性能改進。

Key Findings from the MIT Study
MIT's study, supported by a U.S. Department of Energy Nuclear Energy University Programs (DOE NEUP) grant, simulated the performance of Lightbridge Fuel in NuScale's Small Modular Reactor (SMR).

麻省理工學院研究的關鍵發現
麻省理工學院的研究得到美國能源部核能大學項目(DOE NEUP)資助,模擬了Lightbridge燃料在NuScale小型模塊反應堆(SMR)中的表現。

Dr. Koroush Shirvan, Atlantic Richfield Career Development Professor in Energy Studies at Nuclear Science and Engineering Department at MIT, commented, "The results from our analysis of Lightbridge Fuel in the NuScale VOYGR small modular reactor have shown promising safety and performance benefits. Compared to conventional fuel, Lightbridge Fuel demonstrated improved thermal-hydraulic margins, lower operating temperatures, and greater potential for power uprates, which contributes to enhancing reactor economics. Our collaboration with Lightbridge furthers the development of innovative nuclear fuel technologies critical to reducing cost of future nuclear power plants."

麻省理工學院核科學與工程系能源研究領域的亞特蘭大石油公司職業發展教授Koroush Shirvan博士評論稱:「我們對Lightbridge燃料在NuScale VOYGR小型模塊反應堆中的分析結果顯示了有望的安全性和性能優勢。與傳統燃料相比,Lightbridge燃料表現出改進的熱水力裕量、更低的運行溫度以及更大的功率上調潛力,這有助於增強反應堆的經濟性。我們與Lightbridge的合作推動了創新核燃料技術的發展,這對於降低未來核電廠的成本至關重要。」

The MIT findings confirm that Lightbridge Fuel operates at significantly lower temperatures compared to traditional fuel, with improved safety margins that can enable power uprate opportunities while maintaining safe operation of the fuel. The study emphasized Lightbridge Fuel's potential for power uprates, enabling reactors to generate more power safely.

麻省理工學院的研究證實Lightbridge燃料的運行溫度明顯低於傳統燃料,具有改進的安全裕量,可實現功率上調的機會,同時保持燃料的安全運行。該研究強調了Lightbridge燃料在功率上調方面的潛力,使反應堆能夠安全地產生更多電力。

According to the MIT study, the main advantages of Helical Cruciform Fuel (HCF), aka Lightbridge Fuel, over cylindrical fuel are:

根據麻省理工學院的研究,螺旋十字燃料(HCF)即Lightbridge燃料相較於圓柱形燃料的主要優勢包括:

  1. Increased Heat Transfer Area: HCF has a 35% larger heat transfer area, which enhances heat removal efficiency.

  2. Lower Operating Temperature: Due to the high thermal conductivity of the U-50Zr (uranium-50 weight percent zirconium) alloy, HCF operates at a lower temperature, reducing the mobility of fission gases and improving fuel performance.

  3. Higher Critical Heat Flux (CHF) Margin: The larger heat transfer area and improved flow mixing in HCF channels result in a higher CHF margin, allowing for potential power uprate.

  4. Self-spacing Design: HCF rods support each other at every twist pitch, eliminating the need for spacer grids and reducing pressure drop.

  5. Reduced Irradiation-induced Swelling: The higher zirconium content in HCF reduces swelling and the likelihood of fission gas release compared to U-rich U-Zr alloys.

  6. Lower CRUD Formation Potential: Lower wall temperatures and void fractions in HCF channels imply less CRUD (Chalk River Unidentified Deposits) formation.

  1. 增加的熱傳遞面積:HCF具有35%更大的熱傳遞面積,提高了熱量移除效率。

  2. 由於U-50Zr(鈾-50重量百分比鋯)合金具有較高的熱導率,HCF在較低溫度下運行,減少裂變氣體的遷移,提高燃料性能。

  3. 更高的臨界熱流密度(CHF)裕度:HCF通道中更大的傳熱面積和改善的流動混合導致更高的CHF裕度,從而有可能提高功率。

  4. 自整理設計:HCF棒在每個扭轉間距處相互支撐,消除了對間隔柵的需求,降低了壓降。

  5. 減少輻照誘導腫脹:HCF中較高的鋯含量減少了腫脹和相對於富含U的U-Zr合金可能性裂變氣體釋放。

  6. 較低的CRUD形成潛力:HCF通道中較低的壁溫和虛空率意味着較少的CRUD(卓曼智庫未識別沉積物)形成。

These advantages make HCF a promising option for improving the performance and safety of small modular reactors (SMRs).

這些優勢使HCF成爲改善小模塊反應堆(SMRs)性能和安全性的有希望的選擇。

The full MIT paper can be found by clicking HERE or visiting .

可以通過點擊這裏查找完整的MIt論文或訪問。

Key Findings from the SIA Study
SIA conducted a study under a DOE GAIN Regulatory Research Grant, evaluating Lightbridge Fuel in a Pressurized Water Reactor (PWR) under both normal and accident conditions. The study concluded that Lightbridge's metallic fuel is safer than conventional UO2 fuel, particularly in accident conditions, with significantly lower peak cladding and peak fuel temperatures and where the calculations showed that cladding stresses were not sufficient to damage the cladding.

新加坡航空公司研究的關鍵發現
新加坡航空公司在美國能源部GAIN法規研究撥款下開展了一項研究,評估了特斯拉-冷卻液在壓水堆反應堆(PWR)中在正常和事故情況下的使用。 研究得出結論,特斯拉-冷卻液的金屬燃料比傳統的UO2燃料更安全,特別是在事故情況下,峯值包殼溫度和燃料溫度明顯較低,其中計算顯示包殼應力不足以損壞包殼。

Dr. Wenfeng Liu, the principal investigator of this study from SIA, noted, "Our study of Lightbridge Fuel in pressurized water reactors under both normal and accident conditions confirmed significant safety enhancements over traditional uranium dioxide fuel. The fuel's lower operating temperatures and reduced cladding oxidation, particularly under loss-of-coolant conditions, underscore the potential of Lightbridge Fuel to improve reactor safety and operational reliability. We're excited to contribute to advancing a technology that could play a key role in the future of nuclear power."

此項研究的主要調查員、新加坡航空公司的劉文峯博士指出:「我們對在壓水堆反應堆中使用特斯拉-冷卻液在正常和事故情況下的研究證實了相比傳統的氧化鈾燃料具有顯著的安全性提升。燃料的較低工作溫度以及減少的包殼氧化,特別是在失冷卻條件下,突顯了特斯拉-冷卻液提高反應堆安全性和運行可靠性的潛力。我們很高興能夠爲推動這項有望在覈電未來中發揮關鍵作用的技術貢獻自己的力量。」

According to the SIA study, in accident conditions, metallic fuel [Lightbridge Fuel] demonstrates several advantages over UO2 fuel:

根據新加坡航空公司的研究,事故情況下,金屬燃料【特斯拉-冷卻液】比UO2燃料有幾個優勢:

  1. Lower Peak Cladding Temperature (PCT): Metallic fuel exhibits significantly lower peak cladding temperatures compared to UO2 (uranium dioxide) fuel during loss of coolant accidents (LOCA).  For example, in various simulated conditions, the peak cladding temperature for metallic fuel was consistently lower than that for UO2 fuel.

  2. Shorter Duration at High Temperatures: Metallic fuel spends less time at high temperatures during accident scenarios, which reduces the risk of cladding oxidation and failure.

  3. Reduced Cladding Oxidation: Due to the lower temperatures and shorter high-temperature durations, the cladding oxidation for metallic fuel is expected to be lower than for UO2 fuel.

  4. Cladding Stresses not Sufficient to Damage Cladding: Although cladding stresses can increase due to fuel thermal expansion during rapid power changes, the stresses in metallic fuel are not significant enough to cause cladding damage.

  5. Enhanced Safety Margins: The overall lower temperatures and reduced oxidation contribute to enhanced safety margins, making metallic fuel a safer alternative in accident conditions.

  1. 較低的峯值包殼溫度(PCT):金屬燃料在失冷卻事故(LOCA)期間表現出明顯較低的峯值包殼溫度,與UO2(氧化鈾)燃料相比。 例如,在各種模擬條件下,金屬燃料的峯值包殼溫度始終低於UO2燃料。

  2. 在高溫持續時間較短:金屬燃料在事故情景中花費的高溫時間較短,從而降低了包殼氧化和損壞的風險。

  3. 降低包殼氧化:由於較低的溫度和較短的高溫持續時間,金屬燃料的包殼氧化預計將低於UO2燃料。

  4. 包殼應力不足以損壞包殼:儘管由於燃料熱膨脹在快速功率變化期間可能會增加包殼應力,但金屬燃料中的應力不足以造成包殼損壞。

  5. 通過降低溫度和減少氧化,金屬燃料在事故條件下提高了安全裕度,使其成爲一種更安全的替代品。

In summary, the Lightbridge metallic fuel offers improved safety performance over UO2 fuel in accident conditions by maintaining lower temperatures and reducing oxidation.

總之,lightbridge金屬燃料在事故條件下表現出比UO2燃料更好的安全性能,通過保持較低溫度和減少氧化。

The full SIA paper can be found by clicking HERE or visiting .

完整的新加坡航空公司論文可以通過點擊此處 或 訪問。

Summary of the Lightbridge paper presented at the TopFuel 2024 Conference
Lightbridge presented an overview of some of the company's previous fuel development activities, including results from an experimental test, previously conducted in an overseas test reactor, where its metallic fuel rodlets endured approximately 24 hours in dryout conditions during irradiation. While conventional nuclear fuel would have experienced severe structural degradation that could have led to the loss of coolable geometry, Lightbridge Fuel maintained its structural integrity and coolable geometry, demonstrating an exceptional level of safety and durability. This physical test confirms the fuel's resilience in certain loss-of-flow accident scenarios.

在TopFuel 2024會議上呈現的lightbridge論文摘要
Lightbridge介紹了一些公司先前燃料開發活動的概述,包括先前在海外試驗反應堆中進行的實驗測試結果,其中其金屬燃料棒芯在輻照期間持續在乾燥條件下約24小時。傳統核燃料將經歷嚴重的結構降解,可能導致冷卻幾何性的喪失,而Lightbridge燃料保持了其結構完整性和冷卻幾何性,展示了出色的安全性和耐久性。這項物理測試證實了該燃料在某些失流事故場景中的彈性。

Scott Holcombe, Ph.D., Vice President of Engineering at Lightbridge Corporation, highlighted the significance of these findings: "What really stood out to me was the flow blockage incident previously experienced in a test reactor environment where our fuel samples were subjected to over 24 hours without proper water flow—an extreme situation that would typically result in severe degradation for conventional fuel resulting in a loss of coolable geometry. In contrast, the Lightbridge Fuel sample maintained its structural integrity and its coolable geometry under these extreme conditions. The fuel's performance under these accident conditions highlights the robustness and resilience of our design. This irradiation experiment is one of the key reasons we're confident in the future applications of Lightbridge Fuel."

Lightbridge公司工程副總裁Scott Holcombe博士強調了這些發現的重要性:"對我而言真正突出的是先前在試驗反應堆環境中遇到的流動阻塞事件,在這種極端情況下,我們的燃料樣本在沒有適當水流的情況下經受超過24小時——這通常會導致傳統燃料嚴重降解,導致冷卻幾何性的喪失。相反,Lightbridge燃料樣本在這些極端條件下保持了其結構完整性和冷卻幾何形狀。燃料在這些事故條件下的表現突顯了我們設計的穩固性和彈性。這次輻照實驗是我們對未來lightbridge燃料應用感到自信的主要原因之一。"

As reflected in the paper, a number of studies and experiments have been conducted on Lightbridge Fuel over the years to confirm its performance and potential benefits:

正如論文中所反映的,多年來對lightbridge燃料進行了許多研究和實驗證實其性能和潛在好處。

1. Neutronics Studies:

1. 中子學研究:

  • Detailed calculations using MCNP-6 and DRAGON to model the fuel's geometry and performance.

  • Evaluations in various reactor configurations (e.g., Westinghouse AP-1000, AREVA EPR, standard Westinghouse-type four-loop 1,100-MWe PWR) to assess reactivity control, power uprates, and fuel cycle costs.

  • 使用MCNP-6和DRAGON進行詳細計算,以模擬燃料的幾何形狀和性能。

  • 在不同反應堆配置下(例如,Westinghouse AP-1000,AREVA EPR,標準的Westinghouse四環路1,100兆瓦壓水堆)進行評估,以評估反應性控制,功率提升和燃料循環成本。

2. Thermal-Hydraulics Studies:

2. 熱水力學研究:

  • Analytical studies to determine heat flux, coolant flow rates, and heat transfer coefficients.

  • Subchannel calculations using the SC-1 code to develop correlations for Departure from Nucleate Boiling Ratios.

  • Experimental tests on dummy fuel rods to verify hydraulic resistance, critical power, and vibration characteristics.

  • 進行分析研究,以確定熱流密度,冷卻劑流速和傳熱係數。

  • 使用SC-1代碼進行細分通道計算,以開發從核沸騰比的相關性。

  • 對假脫靶燃料棒進行實驗測試,以驗證水力阻力,臨界功率和振動特性。

3. Safety Analyses (for VVER-1000 reactors):

3. 安全分析(針對VVER-1000反應堆):

  • Simulations using codes like KANAL, RELAP5, RECOL, and TIGR-1 to analyze various operational occurrences and design basis accidents.

  • Comparisons of peak cladding temperatures and cool-down times between Lightbridge Fuel and standard UO2 fuel.

  • 使用KANAL、RELAP5、RECOL和TIGR-1等代碼進行模擬,分析各種操作事件和設計基礎事故。

  • Lightbridge燃料和標準UO2燃料之間的峯值包殼溫度和冷卻時間比較。

4. Fuel Performance Studies:

4. 燃料性能研究:

  • Development of performance models using ANSYS to evaluate temperatures, strains, and swelling.

  • Access to a database of performance data from similar uranium-zirconium alloy fuels used in icebreaker ships.

  • 使用ANSYS開發性能模型,評估溫度、應變和腫脹。

  • 訪問一個數據庫,包含類似用於破冰船的鈾鋯合金燃料的性能數據。

5. Irradiation Tests:

5. 照射試驗:

  • Proof-of-concept irradiation tests in the IR-8 research reactor to assess fabrication-related faults and performance under irradiation.

  • 在IR-8研究反應堆進行概念驗證照射試驗,評估與製造相關的缺陷和照射下的性能。

6. Fabrication Development:

6. 製造開發:

  • Co-extrusion of fuel rods using surrogate materials and investigation of ingot casting techniques.

  • Ongoing fabrication development at Idaho National Laboratory.

  • 使用代用材料共擠燃料棒並調查鑄錠技術。

  • 愛達荷國家實驗室進行中的製造工藝開發。

These studies have confirmed the expected performance of Lightbridge Fuel and provided a basis for continued development and future regulatory licensing.

這些研究已確認了lightbridge燃料的預期性能,併爲進一步開發和未來的監管許可提供了基礎。

The full Lightbridge paper can be found by clicking HERE or visiting .

點擊此處或訪問以找到完整的lightbridge論文。

Lightbridge is now preparing for in-reactor testing of its coupon fuel samples at Idaho National Laboratory (INL) under its Strategic Partnership Project (SPP) agreement. The Advanced Test Reactor (ATR) at INL will provide critical data to further validate these safety and performance benefits, which will be instrumental as Lightbridge continues toward regulatory licensing and commercial deployment.

lightbridge現正準備在愛達荷國家實驗室進行試驗堆中對其券樣燃料樣本進行測試,根據其戰略合作項目(SPP)協議。愛達荷國家實驗室的先進試驗反應堆(​ATR)將提供關鍵數據,進一步驗證這些安全性和性能優勢,這對於lightbridge繼續向監管許可和商業部署邁進至關重要。

For more information, visit Lightbridge's Technical Articles section on their website, where the full papers from TopFuel 2024, along with summaries prepared by Lightbridge are available: .

如需更多信息,請訪問lightbridge網站上的技術文章部分,那裏提供了從TopFuel 2024獲得的完整論文以及lightbridge準備的摘要:。

About Lightbridge Corporation
Lightbridge Corporation (NASDAQ: LTBR) is focused on developing advanced nuclear fuel technology essential for delivering abundant, zero-emission, clean energy and providing energy security to the world. The Company is developing Lightbridge Fuel, a proprietary next-generation nuclear fuel technology for existing light water reactors and pressurized heavy water reactors, significantly enhancing reactor safety, economics, and proliferation resistance. The Company is also developing Lightbridge Fuel for new small modular reactors (SMRs) to bring the same benefits plus load-following with renewables on a zero-carbon electric grid.

關於Lightbridge公司:Lightbridge公司(納斯達克:LTBR)專注於開發先進的核燃料技術,爲實現世界範圍內的充足的零排放清潔能源和爲世界提供能源安全。該公司正在開發Lightbridge Fuel,一種專有的下一代核燃料技術,適用於現有的輕水反應堆和加壓重水反應堆,大大提高了反應堆的安全性、經濟性和防擴散性。該公司還正在爲新的小型模塊化反應堆(SMRs)開發Lightbridge燃料,以在零碳電網上帶來相同的好處和可再生能源的負荷跟蹤。
愛文思控股(納斯達克代號:LTBR)專注於開發先進的核燃料技術,以提供充足的零排放清潔能源,併爲世界提供能源安全。公司正在開發Lightbridge燃料,這是一種專有的下一代核燃料技術,適用於現有的輕水堆和重水堆,顯著提高了反應堆的安全性、經濟性和防擴散性。公司也正爲新型小模塊反應堆(SMR)開發Lightbridge燃料,帶來相同的好處,以及與可再生能源配合實現零碳電網的負載跟隨。

Lightbridge has entered into two long-term framework agreements with Battelle Energy Alliance LLC, the United States Department of Energy's operating contractor for Idaho National Laboratory, the United States' lead nuclear energy research and development laboratory. DOE's Gateway for Accelerated Innovation in Nuclear program has twice awarded Lightbridge to support the development of Lightbridge Fuel over the past several years. Lightbridge is participating in two university-led studies through the DOE Nuclear Energy University Program at Massachusetts Institute of Technology and Texas A&M University. An extensive worldwide patent portfolio backs Lightbridge's innovative fuel technology. Lightbridge is included in the Russell Microcap Index.

Lightbridge已與Battelle Energy Alliance LLC簽署了兩份長期框架協議,後者是美國能源部在愛達荷國家實驗室的運營承包商,該實驗室是美國領先的核能研究和發展實驗室。在過去幾年裏,美國能源部的核能快速創新門戶項目兩次授予Lightbridge支持Lightbridge燃料開發的項目。Lightbridge正在通過美國麻省理工學院和德克薩斯A&M大學主導的兩項大學研究中參與美國能源部核能大學計劃。Lightbridge創新燃料技術得到了廣泛的全球專利組合支持。Lightbridge被列入Russell Microcap指數。

譯文內容由第三人軟體翻譯。


以上內容僅用作資訊或教育之目的,不構成與富途相關的任何投資建議。富途竭力但無法保證上述全部內容的真實性、準確性和原創性。
    搶先評論