share_log

抢占应用场景 物流巨头争相布局大模型

Securities Times ·  Oct 16 00:00

揽收快递包裹31.61亿件,投递快递包裹31.20亿件,这是今年国庆长假七天累计的快递量。与此同时,国庆期间日均揽收量与投递量,相比2023年分别同比增长28.4%和26.7%。

物流快递行业的高速增长,对实现降本增效,提高运营效率的需求日益迫切。随着AI技术的日益成熟,物流巨头扎堆布局大模型,菜鸟“天机π”辅助决策、顺丰“丰知”物流决策大模型、京东物流“超脑”等纷纷推出。

巨头扎堆布局

在劳动力成本攀升、物流网络日益复杂的现实挑战面前,AI大模型被视为解决效率瓶颈、促进精益化管理的有力武器,成为物流快递企业竞逐的核心技术之一。

菜鸟网络早在2023年6月就发布了基于大模型的数字供应链产品“天机π”,通过先进的算法与大模型技术结合能够辅助决策,在销量预测、补货计划和库存健康等领域实现精准预测,并随着技术进步和数据累积持续迭代。目前,菜鸟大模型已在快消零售、工业制造、汽车等多个行业得到应用,并针对不同行业提供定制化服务。

顺丰科技也不甘落后,今年8月18日推出了自主研发的“丰知”物流决策大模型。这款大模型主要应用于物流供应链的智能化分析、销量预测、运输路线优化与包装优化等决策领域。值得一提的是,“丰知”大模型在保证预测结果准确性的基础上,大幅降低了服务器资源需求,运行效率提升了120倍,预测准确率提升了5%。

时隔一月,9月8日顺丰科技再次出手,在深圳国际人工智能展上发布了物流行业的垂直领域大语言模型“丰语”,并展示了在顺丰的市场营销、客服、收派、国际关务等业务板块的20余个场景中的落地实践应用。顺丰科技AIoT副总裁宋翔表示,目前基于大模型的摘要准确率已超过95%,这让客服人员与客户对话后的处理平均时长减少了30%。

京东物流同样在大模型领域有所布局。2023年7月,京东物流发布了基于大模型的数智化供应链产品“京东物流超脑”。这款产品主要应用于交互、分析和决策三个场景,通过数字孪生技术和多模态交互能力,提高了仓储布局优化、运营异常改善和供应链计划辅助决策的效率。

“随着电商的快速发展和消费者需求的多样化,物流行业需要更高效、更智能的解决方案来满足市场需求。”中物汇成物流研究院高级研究员袁帅告诉证券时报记者,AI技术的不断突破,为大模型在物流行业的应用提供了可能;行业竞争的加剧,促使企业寻求技术创新以提升竞争力;而政策支持也为物流行业智能化转型提供了良好的外部环境。

抢占应用场景

“从2022年年底ChatGPT发布至今,大模型赛道发展得非常迅猛,2023年称为模型之年,大量的模型公司都在卷模型的参数和尺寸,到今年大家纷纷都投向具体模型的应用。”2024全球智慧物流峰会上,智谱AI副总裁吴玮杰回顾了大模型的发展历程。

业内普遍认为,在众多产业场景中,公路物流货运具有体系完善、环节众多、数据复杂、场景丰富等特性,是大模型落地应用的主要领域之一。大模型技术的深度应用,预计将为物流全链路运营效率、服务体验和业务创新带来巨大变革。

“大家可以试想一下未来的智慧物流场景,通过多模态大模型,所有车辆都可以同时长着多只‘眼睛’,在副驾驶跟司机进行非常好的交互,成为伴驾功能。”吴玮杰认为,在运输管理中,通过大模型的多智能体应用,可以进行复杂的订单计划管理,并对订单在物流车辆的配送执行进行可视化追踪。

目前,大模型可以通过分析历史数据和实时交通状况,为物流企业提供最优的运输路线,减少不必要的行驶里程,从而降低燃油成本和时间成本。

“大模型通过对历史交易记录与市场波动趋势的深度学习,实现对未来商品需求量的精准预估,避免过剩库存造成的资源浪费。”中国矿业大学(北京)管理学院硕士生企业导师支培元告诉证券时报记者,大模型通过实时监测库存状态,自动化调节进货节奏,确保仓储成本与供应连续性的平衡。

以菜鸟的“天机π”为例,该大模型能够根据历史销售数据、市场趋势等信息,预测未来商品需求量,帮助商家合理安排库存,避免过剩库存造成的资源浪费。同时,菜鸟大模型还能够实时监测库存状态,自动化调节进货节奏,确保仓储成本与供应连续性的平衡。

避免一哄而上

在物流行业应用大模型虽然带来了许多优势,但也可能伴随一些风险和隐患。经不经济、可不可靠、实不实用,这决定着企业部署大模型的意愿。

“AI大模型具有高投入的特点,既需要大量资金投入,又需要大量物流数据用于训练,满足这两方面条件的物流企业,除了两三家大型龙头企业,其他物流企业缺少其中至少一个条件。”萨摩耶云科技集团首席经济学家郑磊告诉记者,如果硬上大模型项目,可能在投入使用后,发现企业的物流数据量不敷使用,导致大数据模型不能发挥预期作用。

除菜鸟、顺丰、京东外,近期中远海运推出了国内首个航运领域大模型Hi-Dolphin,货拉拉发布了货运无忧大模型,百度地图则推出了物流大模型Beta版。

业内人士指出,目前不少快递物流企业是冲着大模型而大模型的,在落地应用、场景结合、核心价值、优化迭代上并没有做好,因此就出现了大模型是做完了,却不知道该如何让大模型介入业务,也不知道该如何优化业务需求的情况。此外,很多大模型没有找到前端真正创造产业价值、能够变现的这条路。

“一哄而上不仅可能因投资不足而导致半途而废,即便勉强做出来,也可能因为企业管理不适应而导致无法投入正常使用。这样达不成降本增效的目标。”郑磊表示。

为避免物流行业从大模型“一哄而上”的困境,企业需要明确大模型的应用场景和价值定位,避免盲目跟风。郑磊认为,物流企业可以将重点放在物流管理的某一特别需要改进的方面,如需求管理、存储管理、运输调配优化等,自研或委托专业科技创新企业定制大模型垂直应用工具,这样做不仅减少了投入,而且有可能大幅提高管理瓶颈的效率,提高物流企业人工智能化水平。

The above content is for informational or educational purposes only and does not constitute any investment advice related to Futu. Although we strive to ensure the truthfulness, accuracy, and originality of all such content, we cannot guarantee it.
    Write a comment