share_log

Toyota and Xanadu Collaborate to Pioneer Quantum Computing Applications in Materials Simulations

Toyota and Xanadu Collaborate to Pioneer Quantum Computing Applications in Materials Simulations

豐田和世外桃源合作,開拓材料模擬中的量子計算概念應用
PR Newswire ·  10/08 20:00

TORONTO, Oct. 8, 2024 /PRNewswire/ - Toyota Research Institute of North America (TRINA) and Xanadu, a leader in quantum computing, have launched a new project to harness the power of quantum computing in advancing materials science simulations. This collaboration focuses on developing quantum algorithms to improve the design, characterization, and optimization of complex materials, including those with desired quantum properties critical for future mobilities. The initiative targets at new avenues towards material discovery and development, with broad applications across quantum sensors, energy technologies, and beyond.

多倫多,2024年10月8日/美通社/ -北美豐田研究所(TRINA)和量子計算領導者Xanadu已啓動了一個新項目,利用量子計算的力量推動材料科學模擬的發展。該合作重點是開發量子算法,以改進複雜材料的設計、表徵和優化,包括那些具有未來移動關鍵量子特性的材料。該倡議旨在探索發現材料和開發新途徑,涵蓋了量子傳感器、能源技術等廣泛應用領域。

There is an urgent need to identify optically addressable spin defects, which is a localized disturbance in the electronic spin configuration of a material, in 2D materials to develop advanced quantum sensors capable of detecting minute magnetic and electric fields, as well as microscopic strains. Achieving this objective requires surpassing the limitations of classical computational methods, to accurately predict key optoelectronic properties of defects in materials. This new research suggests that quantum computers could provide unparalleled accuracy in discovering new defect-material platforms for quantum sensing applications.

迫切需要識別具光學尋址自旋缺陷,在2D材料中發展高級量子傳感器,能夠檢測微弱磁場和電場,以及微觀應變。實現這一目標需要超越經典計算方法的限制,準確預測材料中缺陷的關鍵光電特性。 這項新研究 表明量子計算機在發現新用於量子傳感應用的缺陷材料平台方面可能提供無與倫比的準確性。

A key aspect of this collaboration is the integration of advanced quantum embedding theory with the development of optimized quantum algorithms. Quantum embedding theory helps to reduce the significant computational burden needed for simulating defects in materials. This strategy allows quantum computers to focus on the most challenging parts of the problem while leaving a classical supercomputer to handle the rest. Equally important is the development of low-cost tailored quantum algorithms, which are essential to enable the simulation of defects on early quantum computers. Together, these elements are critical to advancing the collaboration's goals.

該合作的一個關鍵方面是將愛文思控股的先進量子嵌入理論與優化量子算法相結合。量子嵌入理論有助於減少模擬材料缺陷所需的重大計算負擔。這一策略允許量子計算機專注於問題中最具挑戰性的部分,同時留下一個經典超級計算機來處理其餘部分。同樣重要的是開發低成本定製量子算法,這對於啓用早期量子計算機模擬缺陷至關重要。這些元素共同推動合作目標的實現。

"Our approach involves dividing the problem into tasks best suited for quantum computers and those that can be efficiently handled by classical supercomputers," said Juan Miguel Arrazola, Head of Algorithms at Xanadu. "By combining this strategy with our optimized quantum algorithms, we can achieve accurate insights at a lower computational cost, effectively linking new quantum defects to practical applications."

「我們的方法涉及將問題分解爲最適合量子計算機處理的任務和可以由經典超級計算機高效處理的任務,」Xanadu算法主管胡安·米格爾·阿拉索拉表示。“通過將這種策略與我們的優化量子算法相結合,我們可以以更低的計算成本獲得準確洞察,有效地將新的量子缺陷與實際應用聯繫起來。

This research delves into the study of a negatively charged boron vacancy in hexagonal boron nitride, a two-dimensional defect-material system poised for quantum sensing applications. Using classical simulations, a predictive model for the material's luminescence properties was developed, providing needed data for designing optimized quantum algorithms with lower computational costs and demonstrating the exciting role quantum computing can play in advancing materials science.

這項研究深入探討了六角硼氮化物中的一個帶負電荷的空位,這是一個二維缺陷材料體系,準備用於量子傳感應用。通過經典模擬,開發了這種材料發光特性的預測模型,爲設計具有更低計算成本的優化量子算法提供了所需數據,並展示了量子計算在推動材料科學方面所能發揮的激動人心的作用。

The collaboration between TRINA and Xanadu highlights the increasing significance of quantum computing in overcoming challenges that have traditionally slowed progress in materials science. The emerging capabilities of quantum computing have shown promising potential in many areas of materials science. Now the application in quantum defects and quantum sensing has become an exciting new frontier.

TRINA與Xanadu之間的合作突顯了量子計算在克服傳統上阻礙材料科學進展的挑戰方面日益重要。量子計算的新興能力在許多材料科學領域展現出有 promising potential。現在量子缺陷和量子傳感的應用已成爲一個令人興奮的全新領域。

"Understanding the physics of spin defects is crucial for advancing quantum sensing technology," said Chen Ling, Senior Research Manager at Toyota Motor North America (TMNA)." Quantum computing has now made a significant step towards the precise manipulation and control of these defects to enhance sensitivity and accuracy in detecting minute physical changes at the quantum level."

「了解自旋缺陷的物理對於推動量子傳感技術至關重要,」豐田汽車北美公司(TMNA)的高級研究經理陳玲表示。「量子計算現在已經邁出了朝着精確操縱和控制這些缺陷的重要一步,以增強對量子級別的微小物理變化的敏感性和準確性。」

This collaboration between TMNA and Xanadu is set to accelerate advancements in quantum sensing and to establish a new standard for how quantum computing can be effectively harnessed to solve some of the most complex challenges in materials science.

TMNA與Xanadu之間的合作旨在加速量子傳感技術的進展,併爲量子計算如何有效應用於解決材料科學中一些最複雜挑戰樹立新標準。

SOURCE Xanadu

來源:Xanadu。

WANT YOUR COMPANY'S NEWS FEATURED ON PRNEWSWIRE.COM?

想要您公司的新聞在PRNEWSWIRE.COM上特色呈現嗎?

440k+
440k+

Newsrooms &
新聞發佈室&

Influencers
影響力
9k+
9k+

Digital Media
數字媒體

Outlets
賣場
270k+
270k+

Journalists
新聞記者

Opted In
已選擇加入
GET STARTED
開始使用

譯文內容由第三人軟體翻譯。


以上內容僅用作資訊或教育之目的,不構成與富途相關的任何投資建議。富途竭力但無法保證上述全部內容的真實性、準確性和原創性。
    搶先評論