GNQ Insilico's AI-Driven Digital Twin Platform Shows Promising Results in First Virtually Simulated Clinical Drug Trial
GNQ Insilico's AI-Driven Digital Twin Platform Shows Promising Results in First Virtually Simulated Clinical Drug Trial
GNQ Insilico's ("GNQ") proprietary genomics-driven platform is leveraging Artificial Intelligence (AI) and Quantum Computing technologies to create "intelligent digital twins" of human patients that can mimic how a drug will interact with an individual patient's unique biology, down to the cellular level.
GNQ's platform has demonstrated success in synthesizing digital twins of human patients.
Additionally, GNQ was able to simulate the effects of a drug on these digital twins.
The results highlight how genomics and AI can be used by the pharmaceuticals and life sciences industries to improve the efficiency of clinical trial designs for new drug development.
GNQ Insilico(“GNQ”)專有的基因組學驅動平台正在利用人工智能(AI)和量子計算技術來創造 “智能” 數字雙胞胎“能夠模仿藥物如何與個體患者的獨特生物學相互作用的人類患者,直至細胞層面。
GNQ 的平台在合成人類患者的數字雙胞胎方面取得了成功。
此外,GNQ 能夠模擬藥物對這些數字雙胞胎的影響。
研究結果突顯了製藥和生命科學行業如何使用基因組學和人工智能來提高新藥開發臨床試驗設計的效率。
Vancouver, British Columbia--(Newsfile Corp. - June 18, 2024) - Trenchant Technologies Capital (CSE: AITT) (OTC: AITTF) (FSE: 5730) "Trenchant" or "the Company"), is pleased to announce that its portfolio company GNQ Insilico ("GNQ") has demonstrated promising results in synthesizing digital twins of human patients, and simulating the effects of an infertility drug on these digital replicas using its proprietary AI-driven platform.
不列顛哥倫比亞省溫哥華--(Newsfile Corp.,2024年6月18日)——Trenchant Technologies Capital(CSE:AITT)(場外交易代碼:AITT)(FSE:5730)“Trenchant” 或 “公司”)欣然宣佈,其投資組合公司GNQ Insilico(“GNQ”)在合成人類患者數字雙胞胎和模擬不孕症藥物的作用方面取得了令人鼓舞的結果使用其專有的人工智能驅動平台在這些數字副本上繪製。
Applications of Digital Twins in Drug Discovery and Development
數字雙胞胎在藥物發現和開發中的應用
In the healthcare industry, digital twins are an emerging technology that has the potential to advance patient care and personalized medicine. Medical digital twins are computer-based virtual models of living and non-living entities which can range from an individual human patient to organs, tissue cells, neural networks, micro-environments, or entire populations. Rather than 3D models, medical digital twins are dynamic virtual replicas of real-life entities and processes, continually interacting with and adapting to real-time data and predicting corresponding future scenarios within a complex system, using AI and quantum computer technologies.
在醫療保健行業,數字雙胞胎是一項新興技術,有可能推進患者護理和個性化醫療。醫療數字雙胞胎是基於計算機的活體和非生命實體的虛擬模型,其範圍從個人體患者到器官、組織細胞、神經網絡、微環境或整個人群。醫療數字雙胞胎不是三維模型,而是現實生活中的實體和過程的動態虛擬副本,使用人工智能和量子計算機技術,持續與實時數據交互並適應實時數據,預測複雜系統中相應的未來場景。
Medical digital twins have the potential to significantly improve the drug discovery and drug development process by improving the efficiency, efficacy and outcome of clinical trials. Currently, the average new drug experiences a 90% failure rate1 during clinical trials, while the average cost to bring a new drug to market is estimated at between $161 million - $1.8 billion (fully capitalized costs inclusive of failures)2. The average timeframe for bringing a typical new drug to market, from discovery to FDA approval, is between 10 - 15 years3.
醫療數字雙胞胎有可能通過提高臨床試驗的效率、療效和結果,顯著改善藥物發現和藥物開發過程。目前,新藥的平均失敗率爲90%1 在臨床試驗期間,將新藥推向市場的平均成本估計在1.61億美元至18億美元之間(包括失敗在內的全部資本化成本)2。從發現到美國食品藥品管理局批准,典型新藥上市的平均時間在10至15年之間3。
Significant improvements in drug discovery and development can be made possible through "in silico" drug simulations using digital twins, by mimicking how a drug will interact with an individual patient's unique biology, down to the cellular level. This could assist pharmaceutical companies in better designing and optimizing clinical trial protocols by enabling them to more accurately predict how these drug compounds will behave prior to human trials, thereby reducing costs and failure rates.
通過使用數字雙胞胎進行的 “計算機化” 藥物模擬,通過模仿藥物如何與個體患者獨特的生物學相互作用,直至細胞層面,可以實現藥物發現和開發的重大改進。這可以幫助製藥公司更好地設計和優化臨床試驗方案,使他們能夠在人體試驗之前更準確地預測這些藥物化合物的表現,從而降低成本和失敗率。
GNQ's Virtually Simulated Clinical Trial
GNQ 的虛擬模擬臨床試驗
GNQ Insilico simulated the pharmacokinetics and pharmacodynamics of an existing infertility treatment on thousands of digital twins, spanning diverse genetic backgrounds and health profiles, that were synthesized using its platform. GNQ's AI optimizer then analyzed the simulated outcomes to identify optimal dosing strategies tailored to each digital twin's characteristics, accounting for factors like genetics, epigenetics, and environmental exposures.
GNQ Insilico使用其平台合成的數千種數字雙胞胎模擬了現有不孕症治療的藥代動力學和藥效學,這些數字雙胞胎涵蓋了不同的遺傳背景和健康狀況。然後,GNQ 的人工智能優化器分析了模擬結果,以確定根據每個數字雙胞胎的特性量身定製的最佳給藥策略,同時考慮遺傳學、表觀遺傳學和環境暴露等因素。
Sudhir Saxena, CTO of GNQ Insilico commented: "Human clinical trials are often hindered by variability in how patients respond to drugs. Our AI-driven digital twins platform will enable us to better optimize the trial design for precise patient subpopulations, before ever running an expensive clinical trial."
GNQ Insilico 首席技術官 Sudhir Saxena 評論道: “人體臨床試驗通常受到患者對藥物反應的可變性的阻礙。我們的人工智能驅動的數字雙胞胎平台將使我們能夠在進行昂貴的臨床試驗之前,更好地針對精確的患者亞群優化試驗設計。”
Two of GNQ's team members, in collaboration with other technologists from leading organizations, also co-authored a recently published paper on a related subject, which illustrates how quantum computing may be leveraged to optimize clinical trial design. To learn more, read the paper: 'Towards Quantum Computing for Clinical Trial Design and Optimization: A Perspective on New Opportunities and Challenges'.
GNQ的兩名團隊成員還與來自領先組織的其他技術專家合作,共同撰寫了最近發表的一篇有關相關主題的論文,該論文說明了如何利用量子計算來優化臨床試驗設計。要了解更多信息,請閱讀論文:'邁向用於臨床試驗設計和優化的量子計算:從新機遇和挑戰的角度來看'.
About GNQ Insilico
關於 GNQ Insilico
GNQ Insilico is an AI-biotechnology company pioneering the development and application of next-generation artificial intelligence capabilities to accelerate therapeutic research, clinical development, and individualized patient care. For more information, visit .
GNQ Insilico是一家人工智能生物技術公司,率先開發和應用下一代人工智能能力,以加速治療研究、臨床開發和個性化患者護理。欲了解更多信息,請訪問。
About Trenchant Technologies Capital
關於 Trenchant 科技資本
Trenchant Technologies Capital (CSE: AITT) is an investment issuer focused primarily on seeking investment in companies introducing novel technologies, including Artificial Intelligence and Quantum Computing, to traditional business models that are due for disruption. Trenchant's team undergoes a rigorous due diligence process to identify companies led by seasoned management teams that are strong candidates for acquisition or an initial public offering (IPO).
Trenchant Technologies Capital(CSE:AITT)是一家投資發行人,主要致力於向將人工智能和量子計算等新技術引入即將發生顛覆的傳統商業模式的公司尋求投資。Trenchant的團隊經過嚴格的盡職調查流程,以確定由經驗豐富的管理團隊領導的公司,這些公司是收購或首次公開募股(IPO)的有力候選人。
In May 2024, Trenchant Technologies Capital acquired a 20% ownership interest in GNQ Insilico from parent company My Next Health Inc. Further, Trenchant holds an option to acquire up to 40% of GNQ Insilico. Learn more here.
ON BEHALF OF THE BOARD TRENCHANT CAPITAL CORP.
2024年5月,Trenchant Technologies Capital從母公司My Next Health Inc.手中收購了GNQ Insilico的20%所有權。此外,Trenchant持有收購GNQ Insilico高達40%股份的期權。在此處了解更多。
代表董事會 TRENCHANT CAPITAL CORP.
Per: "Eric Boehnke"
Eric Boehnke, CEO
每個: “Eric Boehnke”
首席執行官埃裏克·博恩克
For further information, please contact:
Trenchant Technologies Capital Corp.
Eric Boehnke, CEO
Phone: (604) 307-4274
欲了解更多信息,請聯繫:
Trenchant 科技資本公司
首席執行官埃裏克·博恩克
電話:(604) 307-4274
Forward-Looking Statements
前瞻性陳述
This news release contains certain "forward-looking statements" within the meaning of such statements under applicable securities law. Forward-looking statements are frequently characterized by words such as "anticipates", "plan", "continue", "expect", "project", "intend", "believe", "anticipate", "estimate", "may", "will", "potential", "proposed", "positioned" and other similar words, or statements that certain events or conditions "may" or "will" occur. These statements, including but not limited to GNQ's ability to successful complete all necessary trials and regulatory approval processes necessary to be in a position to commercialize any of its technologies, including but not limited to its proprietary genomics-driven platform are only predictions. Various assumptions were used in drawing the conclusions or making the predictions contained in the forward-looking statements throughout this news release. Forward-looking statements are based on the opinions and estimates of management of GNQ at the date the statements are made and are subject to a variety of risks and uncertainties and other factors that could cause actual events or results to differ materially from those projected in the forward-looking statements. Trenchant Capital and GNQ are under no obligation, and expressly disclaims any intention or obligation, to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as expressly required by applicable law.
本新聞稿包含適用證券法下此類陳述所指的某些 “前瞻性陳述”。前瞻性陳述通常以 “預期”、“計劃”、“繼續”、“期望”、“項目”、“打算”、“相信”、“預期”、“估計”、“可能”、“將來”、“潛在”、“提議”、“定位” 等詞語來表徵,或某些事件或條件 “可能” 或 “將” 發生的陳述。這些聲明,包括但不限於GNQ成功完成其任何技術商業化所必需的所有必要試驗和監管批准程序的能力,包括但不限於其專有的基因組學驅動平台,只是預測。在本新聞稿中,在得出結論或做出前瞻性陳述中包含的預測時,使用了各種假設。前瞻性陳述基於GNQ管理層在陳述發表之日的觀點和估計,受各種風險和不確定性以及其他因素的影響,這些因素可能導致實際事件或結果與前瞻性陳述中的預測存在重大差異。除非適用法律明確要求,否則Trenchant Capital和GNQ沒有義務更新或修改任何前瞻性陳述,也明確表示不打算或義務更新或修改任何前瞻性陳述,無論是由於新信息、未來事件還是其他原因。
Neither the Canadian Securities Exchange nor its Market Regulator (as that term is defined in the policies of the Canadian Securities Exchange) accepts responsibility for the adequacy or accuracy of this news release.
加拿大證券交易所及其市場監管機構(該術語在加拿大證券交易所的政策中定義)均不對本新聞稿的充分性或準確性承擔責任。
1 Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B, 12(7), 3049-3062.
2 Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., & Greyson, D. (2011). The cost of drug development: A systematic review. Health Policy, 100(1), 4-17.
3 Sertkaya, A., Birkenbach, A., Berlind, A., & Eyraud, J., Eastern Research Group, Inc. (2014). Examination of Clinical Trial Costs and Barriers for Drug Development. Assistant Secretary of Planning and Evaluation (ASPE).
1 Sun, D.、Gao, W.、Hu、H. 和 Zhou, S. (2022)。爲什麼 90% 的臨床藥物開發失敗以及如何改進?中國製藥學報 B, 12 (7), 3049-3062。
2 Morgan,S.,Grootendorst,P.,Lexchin,J.,Cunningham,C.,Greyson,D.(2011)。藥物研發成本:系統綜述。 健康政策, 100(1)、4-17。
3 A. Sertkaya、A. Birkenbach、A. Berlind 和 J. Eyraud,J.,東方研究集團有限公司(2014)。 審查臨床試驗成本和藥物研發的障礙。規劃和評估部助理部長(ASPE)。
譯文內容由第三人軟體翻譯。