share_log

SensiML Launches First Complete Open-Source AutoML Solution for Edge AI/ML Development

SensiML Launches First Complete Open-Source AutoML Solution for Edge AI/ML Development

SensiML 推出首款用於邊緣 AI/ML 開發的完整開源 AutoML 解決方案
快輯半導體 ·  05/14 12:00
  • Hardware-agnostic solution supports a broad array of edge processors and silicon vendors
  • Establishes a foundation for community-driven edge ML innovation including generative AI, synthetic data generation, and edge learning
  • 與硬件無關的解決方案支持各種邊緣處理器和芯片供應商
  • 爲社區驅動的邊緣機器學習創新奠定基礎,包括生成式人工智能、合成數據生成和邊緣學習

PORTLAND, Ore., May 14, 2024 /PRNewswire/ -- SensiML Corporation, a leader in AI/ML software for the IoT and a subsidiary of QuickLogic (NASDAQ: QUIK), today announced it is disrupting the TinyML market by being the first to offer a complete, open-source AutoML solution for the development of edge AI/ML applications with its popular Analytics Studio application. The open-source model already prevails for highly-adopted AI libraries such as TensorFlow and PyTorch, but until now eludes comprehensive AutoML development tools targeting IoT edge devices.

俄勒岡州波特蘭,2024年5月14日 /PRNewswire/ — 物聯網人工智能/機器學習軟件領域的領導者、QuickLogic(納斯達克股票代碼:QUIK)的子公司Sensiml公司今天宣佈將顛覆TinyML 率先通過其廣受歡迎的Analytics Studio應用程序爲邊緣人工智能/機器學習應用程序的開發提供完整的開源自動機器學習解決方案,從而進入市場。對於高度採用的人工智能庫(例如 TensorFlow 和 PyTorch)來說,開源模式已經佔了上風,但到目前爲止,還沒有針對物聯網邊緣設備的全面的 AutoML 開發工具。

AutoML, or automated machine learning, simplifies and greatly speeds up the process of creating machine learning models. This makes machine learning more accessible to developers who may not have specialized data science knowledge. Building ML models for IoT microcontrollers and edge SoCs is particularly complex because it requires blending data science with embedded code optimization for devices with limited memory and compute power. AutoML helps overcome these challenges.

AutoML 或自動機器學習簡化並大大加快了創建機器學習模型的過程。這使得可能不具備專業數據科學知識的開發人員更容易獲得機器學習。爲物聯網微控制器和邊緣 SoC 構建機器學習模型特別複雜,因爲這需要將數據科學與嵌入式代碼優化相結合,適用於內存和計算能力有限的設備。AutoML 有助於克服這些挑戰。

SensiML's trailblazing open-source offering promises to deliver enhanced creativity, innovation, and AI code transparency to the global community of IoT device developers and expands the company's access to the rapidly growing market projected by ABI Research to reach 3.5 billion AI-enabled edge devices by 2027. SensiML's Analytics Studio brings intelligent sensing capability to a broad range of IoT edge devices such as the following real-world application examples:

SensimL開創性的開源產品有望爲全球物聯網設備開發人員社區提供增強的創造力、創新和人工智能代碼透明度,並擴大該公司進入快速增長的市場的機會。ABI Research預計到2027年將達到35億臺支持人工智能的邊緣設備。SensiML 的分析工作室爲各種物聯網邊緣設備提供智能感知功能,例如以下實際應用示例:

  • Wearable devices and garments that analyze and coach proper human motion and ergonomics in real-time
  • Predictive maintenance and anomaly detection sensors that recognize and react locally to faults in factory/plant machinery, pumps, and valves
  • Building automation and security endpoints with acoustic event detection, keyword recognition, and speaker identification
  • 可穿戴設備和服裝,可實時分析和指導人類的正確運動和人體工程學
  • 預測性維護和異常檢測傳感器,可識別工廠/工廠機械、泵和閥門的故障並在本地做出反應
  • 使用聲學事件檢測、關鍵字識別和說話人識別功能的樓宇自動化和安全終端

Until now, IoT device developers undertaking what are often their first AI/ML projects have had to wade through a fragmented market of proprietary tools with varying capabilities and unclear roadmaps. The open-source release of SensiML's Analytics Studio marks a significant milestone for the IoT Edge AI software tools industry providing:

到目前爲止,從事通常是第一個 AI/ML 項目的物聯網設備開發人員不得不涉足分散的專有工具市場,這些工具的功能各不相同,路線圖不明確。SensiML 分析工作室的開源版本標誌着物聯網邊緣 AI 軟件工具行業的一個重要里程碑,它提供:

Platform Agnostic Model Generation: SensiML's plug-in style, open-source architecture supports a broad array of MCUs, AI/ML accelerated SoCs, and AI engines inspiring developer confidence to build ML datasets using flexible tools not tied to specific vendors, chipsets, or inference engines.

平台無關模型生成: SensiML 的插件式開源架構支持各種 MCU、AI/ML 加速 SoC 和 AI 引擎,這激發了開發人員使用與特定供應商、芯片組或推理引擎無關的靈活工具構建機器學習數據集的信心。

Time-Series Sensor Inputs: Provides support for all conceivable time-series sensors such as microphones, accelerometers, gyros, IMUs, loadcells, strain gauges, PIR sensors, and more. Inputs can be mixed for more complex models with sensor fusion algorithms.

時間序列傳感器輸入: 爲所有可能的時間序列傳感器提供支持,例如麥克風、加速度計、陀螺儀、IMU、稱重傳感器、應變計、PIR 傳感器等。對於更復雜的模型,可以使用傳感器融合算法混合輸入。

Rapid Innovation: AI/ML's fast evolution demands an open-source approach to harness the broader developer community expertise, accelerating key innovations such as generative AI, synthetic data, and edge learning advancements.

快速創新: AI/ML 的快速演變需要開源方法來利用更廣泛的開發者社區專業知識,加速生成式 AI、合成數據和邊緣學習進步等關鍵創新。

Flexibility: Analytics Studio supports multiple model development mechanisms from point-and-click AutoML powered model generation, to code-free GUI-based modeling with full pipeline control, to entirely programmatic Python SDK model creation.

靈活性: Analytics Studio 支持多種模型開發機制,從點擊式 AutoML 驅動的模型生成,到具有完全流水線控制的基於代碼的 GUI 建模,再到完全編程的 Python SDK 模型創建。

Extensibility: Analytics Studio provides model generation for basic feature-based models, regression models, classic ML, and deep learning neural networks. Its rich library of over 80 feature generators also includes the ability to easily add custom transforms, filters, features, and classifiers making it easy for community developers to enhance.

可擴展性: Analytics Studio 爲基於特徵的基本模型、回歸模型、經典 ML 和深度學習神經網絡提供模型生成。其包含 80 多個特徵生成器的豐富庫還包括輕鬆添加自定義轉換、過濾器、功能和分類器的功能,使社區開發人員可以輕鬆進行增強。

By transitioning to a dual licensing model that includes an open-source option, SensiML is offering up its IoT edge AutoML solution as a foundation code base built up over seven years to benefit the broader developer community for collaborative improvement and contribution. With community support, SensiML seeks to extend Analytics Studio to include:

通過過渡到包括開源選項的雙重許可模式,SensiML正在提供其物聯網邊緣AutoML解決方案作爲基礎代碼庫,該解決方案已建立了七年,旨在使更廣泛的開發人員社區受益,以進行協作改進和貢獻。在社區支持下,SensiML力求擴展分析工作室,使其包括:

  • Generative AI model development and tuning
  • Synthetic dataset augmentation
  • Local LLM support
  • Object recognition from image and video data streams
  • Enhanced edge model tuning and learning
  • More MCU, MPU, NPU, and GPU integrations / optimizations
  • More pre-trained model templates for real-world use cases
  • 生成式 AI 模型開發和調整
  • 合成數據集增強
  • 本地 LLM 支持
  • 從圖像和視頻數據流中識別物體
  • 增強邊緣模型調整和學習
  • 更多 MCU、MPU、NPU 和 GPU 集成/優化
  • 更多適用於實際用例的預訓練模型模板

New and existing users will have the flexibility to choose between SensiML's open-source version of Analytics Studio or its fully managed and supported SaaS cloud service implementation based on the same core technology.

新老用戶將可以靈活地在SensiML的開源版本的Analytics Studio或基於相同核心技術的完全託管和支持的SaaS雲服務實施之間進行選擇。

"Four years ago, QuickLogic, our parent company, launched the first open-source eFPGA solution," said Chris Rogers, CEO of SensiML. "We are leveraging this success to democratize edge AI/ML development with our robust tools. This open-source initiative will accelerate edge AI/ML adoption, benefit end-user flexibility, and boost SensiML's SaaS growth and private-label tooling value for our growing list of industry partners."

SensIML首席執行官克里斯·羅傑斯表示:“四年前,我們的母公司QuickLogic推出了第一個開源eFPGA解決方案。”“我們正在利用這一成功,通過我們強大的工具實現邊緣人工智能/機器學習開發的民主化。這項開源計劃將加速邊緣AI/ML的採用,提高最終用戶的靈活性,併爲我們不斷增長的行業合作伙伴提高SensiML的SaaS增長和自有品牌工具的價值。”

Availability
SensiML will launch its public GitHub repository and AutoML engine documentation early this summer. Developers interested in receiving updates and becoming contributors to this pioneering technology can sign up at https://sensiml.com/blog/opensource.

可用性
Sensiml將於今年夏初推出其公共GitHub存儲庫和AutoML引擎文檔。有興趣接收更新併成爲這項開創性技術的貢獻者的開發者可以在以下地址註冊 https://sensiml.com/blog/opensource

About SensiML
SensiML, a subsidiary of QuickLogic (NASDAQ: QUIK), offers cutting-edge software that enables ultra-low power IoT endpoints that implement AI to transform raw sensor data into meaningful insight at the device itself. The company's flagship solution, the SensiML Analytics Toolkit, provides an end-to-end development platform spanning data collection, labeling, algorithm and firmware auto-generation, and testing. The SensiML Toolkit supports a growing list of hardware including 8/16/32-bit MCUs from Microchip, Arm Cortex-M class and higher microcontroller cores, Intel x86 instruction set processors, and heterogeneous core AI/ML optimized SoCs. For more information, visit https://sensiml.com.

關於 SensiML
QuickLogic(納斯達克股票代碼:QUIK)的子公司SensiML提供尖端軟件,使實現人工智能的超低功耗物聯網端點能夠將原始傳感器數據轉化爲對設備本身的有意義的見解。該公司的旗艦解決方案SensiML Analytics Toolkit提供了一個端到端的開發平台,涵蓋數據收集、標籤、算法和固件自動生成以及測試。SensiML Toolkit 支持越來越多的硬件,包括來自微芯的 8/16/32 位微控制器、Arm Cortex-M 級及更高版本的微控制器內核、英特爾 x86 指令集處理器以及異構內核 AI/ML 優化的 SoC。欲了解更多信息,請訪問 https://sensiml.com

SensiML and logo are trademarks of SensiML. TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc. All other trademarks are the property of their respective holders and should be treated as such.

SensiML 和徽標是 SensiML 的商標。TensorFlow、TensorFlow 徽標及任何相關內容 商標是谷歌公司的商標。所有其他商標均爲其各自持有者的財產,應予以相應對待。

SOURCE SensiML Corporation

來源 SensiML 公司

譯文內容由第三人軟體翻譯。


以上內容僅用作資訊或教育之目的,不構成與富途相關的任何投資建議。富途竭力但無法保證上述全部內容的真實性、準確性和原創性。
    搶先評論