Enterprise

Microsoft and Quantinuum say they’ve ushered in the next era of quantum computing

Comment

Image Credits: Microsoft

Microsoft and Quantinuum today announced a major breakthrough in quantum error correction. Using Quantinuum’s ion-trap hardware and Microsoft’s new qubit-virtualization system, the team was able to run more than 14,000 experiments without a single error. This new system also allowed the team to check the logical qubits and correct any errors it encountered without destroying the logical qubits.

This, the two companies say, has now moved the state-of-the-art of quantum computing out of what has typically been dubbed the era of noisy intermediate scale quantum (NISQ) computers. “Noisy” because even the smallest changes in the environment can lead a quantum system to essentially become random (or “decohere”), and “intermediate scale” because the current generation of quantum computers is still limited to just over a thousand qubits at best. A qubit is the fundamental unit of computing in quantum systems, analogous to a bit in a classic computer, but each qubit can be in multiple states at the same time and doesn’t fall into a specific position until measured, which underlies the potential of quantum to deliver a huge leap in computing power.

It doesn’t matter how many qubits you have, though, if you barely have time to run a basic algorithm before the system becomes too noisy to get a useful result — or any result at all.

Combining several different techniques, the team was able to run thousands of experiments with virtually no errors. That involved quite a bit of preparation and pre-selecting systems that already looked to be in good shape for a successful run, but still, that’s a massive improvement from where the industry was just a short while ago.

It’s a step in the right direction for quantum computing. There are still plenty of problems to be solved (and these results need to be replicated, too, of course), but theoretically, a computer with 100 of these logical qubits could already be useful for solving some problems, while a machine with 1,000 qubits could, Microsoft says, “unlock commercial advantage.”

The discrepancies (errors) between entangled qubits. Discrepancies are revealed bycomparing the images from each qubit in a pair, and any differences that exist appear as dots in the central image between each pair
The discrepancies (errors) between entangled qubits. Discrepancies are revealed by comparing the images from each qubit in a pair, and any differences that exist appear as dots in the central image between each pair. Image Credits: Microsoft

The team used Quantinuum’s H2 trapped-ion processor and was able to combine 30 physical qubits into four highly reliable logical qubits. Encoding multiple physical qubits into a single logical qubit helps protect the system from errors. The physical qubits are entangled together so that it becomes possible to detect an error in a physical qubit and fix it.

It’s this error correction that has long vexed the industry: The lower the noise and the higher the quality of the physical qubits, the better, of course, but without sophisticated error correction, there is no way out of the NISQ era because these systems will all decohere sooner rather than later.

“Merely increasing the number of physical qubits with a high error rate — without improving that error rate — is futile because doing so would result in a large quantum computer that is not any more powerful than before,” Dennis Tom, the general manager for Azure Quantum, and Krysta Svore, the VP of Advanced Quantum Development at Microsoft, wrote in today’s announcement. “In contrast, when physical qubits with sufficient quality of operation are used with a specialized orchestration-and-diagnostics system to enable virtual qubits, only then does increasing the number of physical qubits result in powerful, fault-tolerant quantum computers able to perform longer, more complex computation.”

It was only a couple of years ago that logical qubits started outperforming physical qubits. Now, Microsoft and Quantinuum argue that their new hardware/software system demonstrates the largest gap between physical and logical error rates, improving on using only physical qubits by up to 800x.

Image Credits: Microsoft

The researchers note that to move beyond NISQ, a large separation between logical and physical qubit error rates is necessary, as is the ability to correct individual circuit errors and to generate entanglement between at least two logical qubits. If these results hold up, then the team achieved all three and we have indeed entered a stable era the era of resilient quantum computing.

As it turns out, the most important result here may actually be the team’s ability to perform “active syndrome extraction” — that is, the ability to diagnose an error and correct it, without destroying the logical qubit in the process.

“This achievement marks the first step in being able to correct errors while not destroying the logical qubits and showcases a fundamental milestone in quantum error correction,”  Tom and Svore explain. “We demonstrated this critical component of reliable quantum computing with our qubit-virtualization system, which resulted in a low logical error rate over multiple rounds of syndrome extraction.”

It’ll now be up to the rest of the quantum community to replicate these results and implement similar error correction systems. That’s likely just a matter of time, though.

“Today’s results mark a historic achievement and are a wonderful reflection of how this collaboration continues to push the boundaries for the quantum ecosystem,” said Ilyas Khan, founder and chief product officer of Quantinuum. “With Microsoft’s state-of-the-art error correction aligned with the world’s most powerful quantum computer and a fully integrated approach, we are so excited for the next evolution in quantum applications and can’t wait to see how our customers and partners will benefit from our solutions especially as we move towards quantum processors at scale.”

For more details, you can find the technical paper here.

More TechCrunch

For over six decades, the nonprofit has been active in the financial services sector.

Accion’s new $152.5M fund will back financial institutions serving small businesses globally

Meta’s newest social network, Threads is starting its own fact-checking program after piggybacking on Instagram and Facebook’s network for a few months. Instagram head Adam Mosseri noted that the company…

Threads finally starts its own fact-checking program

Looking Glass makes trippy-looking mixed-reality screens that make things look 3D without the need of special glasses. Today, it launches a pair of new displays, including a 16-inch mode that…

Looking Glass launches new 3D displays

Replacing Sutskever is Jakub Pachocki, OpenAI’s director of research.

Ilya Sutskever, OpenAI co-founder and longtime chief scientist, departs

Intuitive Machines made history when it became the first private company to land a spacecraft on the moon, so it makes sense to adapt that tech for Mars.

Intuitive Machines wants to help NASA return samples from Mars

As Google revamps itself for the AI era, offering AI overviews within its search results, the company is introducing a new way to filter for just text-based links. With the…

Google adds ‘Web’ search filter for showing old-school text links as AI rolls out

Blue Origin’s New Shepard rocket will take a crew to suborbital space for the first time in nearly two years later this month, the company announced on Tuesday.  The NS-25…

Blue Origin to resume crewed New Shepard launches on May 19

This will enable developers to use the on-device model to power their own AI features.

Google is building its Gemini Nano AI model into Chrome on the desktop

It ran 110 minutes, but Google managed to reference AI a whopping 121 times during Google I/O 2024 (by its own count). CEO Sundar Pichai referenced the figure to wrap…

Google mentioned ‘AI’ 120+ times during its I/O keynote

Firebase Genkit is an open source framework that enables developers to quickly build AI into new and existing applications.

Google launches Firebase Genkit, a new open source framework for building AI-powered apps

In the coming months, Google says it will open up the Gemini Nano model to more developers.

Patreon and Grammarly are already experimenting with Gemini Nano, says Google

As part of the update, Reddit also launched a dedicated AMA tab within the web post composer.

Reddit introduces new tools for ‘Ask Me Anything,’ its Q&A feature

Here are quick hits of the biggest news from the keynote as they are announced.

Google I/O 2024: Here’s everything Google just announced

LearnLM is already powering features across Google products, including in YouTube, Google’s Gemini apps, Google Search and Google Classroom.

LearnLM is Google’s new family of AI models for education

The official launch comes almost a year after YouTube began experimenting with AI-generated quizzes on its mobile app. 

Google is bringing AI-generated quizzes to academic videos on YouTube

Around 550 employees across autonomous vehicle company Motional have been laid off, according to information taken from WARN notice filings and sources at the company.  Earlier this week, TechCrunch reported…

Motional cut about 550 employees, around 40%, in recent restructuring, sources say

The keynote kicks off at 10 a.m. PT on Tuesday and will offer glimpses into the latest versions of Android, Wear OS and Android TV.

Google I/O 2024: Watch all of the AI, Android reveals

Google Play has a new discovery feature for apps, new ways to acquire users, updates to Play Points, and other enhancements to developer-facing tools.

Google Play preps a new full-screen app discovery feature and adds more developer tools

Soon, Android users will be able to drag and drop AI-generated images directly into their Gmail, Google Messages and other apps.

Gemini on Android becomes more capable and works with Gmail, Messages, YouTube and more

Veo can capture different visual and cinematic styles, including shots of landscapes and timelapses, and make edits and adjustments to already-generated footage.

Google Veo, a serious swing at AI-generated video, debuts at Google I/O 2024

In addition to the body of the emails themselves, the feature will also be able to analyze attachments, like PDFs.

Gemini comes to Gmail to summarize, draft emails, and more

The summaries are created based on Gemini’s analysis of insights from Google Maps’ community of more than 300 million contributors.

Google is bringing Gemini capabilities to Google Maps Platform

Google says that over 100,000 developers already tried the service.

Project IDX, Google’s next-gen IDE, is now in open beta

The system effectively listens for “conversation patterns commonly associated with scams” in-real time. 

Google will use Gemini to detect scams during calls

The standard Gemma models were only available in 2 billion and 7 billion parameter versions, making this quite a step up.

Google announces Gemma 2, a 27B-parameter version of its open model, launching in June

This is a great example of a company using generative AI to open its software to more users.

Google TalkBack will use Gemini to describe images for blind people

Google’s Circle to Search feature will now be able to solve more complex problems across psychics and math word problems. 

Circle to Search is now a better homework helper

People can now search using a video they upload combined with a text query to get an AI overview of the answers they need.

Google experiments with using video to search, thanks to Gemini AI

A search results page based on generative AI as its ranking mechanism will have wide-reaching consequences for online publishers.

Google will soon start using GenAI to organize some search results pages

Google has built a custom Gemini model for search to combine real-time information, Google’s ranking, long context and multimodal features.

Google is adding more AI to its search results